|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfbit | Structured version Visualization version GIF version | ||
| Description: Nonfreeness in both sides implies nonfreeness in the biconditional. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-nnfbit | ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 ↔ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-nnfim 36747 | . . 3 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 → 𝜓)) | |
| 2 | bj-nnfim 36747 | . . . 4 ⊢ ((Ⅎ'𝑥𝜓 ∧ Ⅎ'𝑥𝜑) → Ⅎ'𝑥(𝜓 → 𝜑)) | |
| 3 | 2 | ancoms 458 | . . 3 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜓 → 𝜑)) | 
| 4 | bj-nnfan 36749 | . . 3 ⊢ ((Ⅎ'𝑥(𝜑 → 𝜓) ∧ Ⅎ'𝑥(𝜓 → 𝜑)) → Ⅎ'𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 5 | 1, 3, 4 | syl2anc 584 | . 2 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | 
| 6 | dfbi2 474 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 7 | 6 | bicomi 224 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ (𝜑 ↔ 𝜓)) | 
| 8 | 7 | bj-nnfbii 36728 | . 2 ⊢ (Ⅎ'𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ Ⅎ'𝑥(𝜑 ↔ 𝜓)) | 
| 9 | 5, 8 | sylib 218 | 1 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 ↔ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎ'wnnf 36724 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-bj-nnf 36725 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |