Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfbit Structured version   Visualization version   GIF version

Theorem bj-nnfbit 34934
Description: Nonfreeness in both sides implies nonfreeness in the biconditional. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnfbit ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑𝜓))

Proof of Theorem bj-nnfbit
StepHypRef Expression
1 bj-nnfim 34928 . . 3 ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑𝜓))
2 bj-nnfim 34928 . . . 4 ((Ⅎ'𝑥𝜓 ∧ Ⅎ'𝑥𝜑) → Ⅎ'𝑥(𝜓𝜑))
32ancoms 459 . . 3 ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜓𝜑))
4 bj-nnfan 34930 . . 3 ((Ⅎ'𝑥(𝜑𝜓) ∧ Ⅎ'𝑥(𝜓𝜑)) → Ⅎ'𝑥((𝜑𝜓) ∧ (𝜓𝜑)))
51, 3, 4syl2anc 584 . 2 ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥((𝜑𝜓) ∧ (𝜓𝜑)))
6 dfbi2 475 . . . 4 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
76bicomi 223 . . 3 (((𝜑𝜓) ∧ (𝜓𝜑)) ↔ (𝜑𝜓))
87bj-nnfbii 34909 . 2 (Ⅎ'𝑥((𝜑𝜓) ∧ (𝜓𝜑)) ↔ Ⅎ'𝑥(𝜑𝜓))
95, 8sylib 217 1 ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  Ⅎ'wnnf 34905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-bj-nnf 34906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator