| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-wnfnf | Structured version Visualization version GIF version | ||
| Description: When 𝜑 is substituted for 𝜓, this statement expresses nonfreeness in the weak form of nonfreeness (∃ → ∀). Note that this could also be proved from bj-nnfim 36729, bj-nnfe1 36743 and bj-nnfa1 36742. (Contributed by BJ, 9-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-wnfnf | ⊢ Ⅎ'𝑥(∃𝑥𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-wnf2 36701 | . 2 ⊢ (∃𝑥(∃𝑥𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) | |
| 2 | bj-wnf1 36700 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) | |
| 3 | df-bj-nnf 36707 | . 2 ⊢ (Ⅎ'𝑥(∃𝑥𝜑 → ∀𝑥𝜓) ↔ ((∃𝑥(∃𝑥𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) ∧ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)))) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ Ⅎ'𝑥(∃𝑥𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎ'wnnf 36706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-bj-nnf 36707 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |