![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-wnfnf | Structured version Visualization version GIF version |
Description: When 𝜑 is substituted for 𝜓, this statement expresses nonfreeness in the weak form of nonfreeness (∃ → ∀). Note that this could also be proved from bj-nnfim 35240, bj-nnfe1 35254 and bj-nnfa1 35253. (Contributed by BJ, 9-Dec-2023.) |
Ref | Expression |
---|---|
bj-wnfnf | ⊢ Ⅎ'𝑥(∃𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-wnf2 35212 | . 2 ⊢ (∃𝑥(∃𝑥𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) | |
2 | bj-wnf1 35211 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) | |
3 | df-bj-nnf 35218 | . 2 ⊢ (Ⅎ'𝑥(∃𝑥𝜑 → ∀𝑥𝜓) ↔ ((∃𝑥(∃𝑥𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) ∧ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)))) | |
4 | 1, 2, 3 | mpbir2an 710 | 1 ⊢ Ⅎ'𝑥(∃𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1782 Ⅎ'wnnf 35217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2138 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-bj-nnf 35218 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |