![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version |
Description: Variant of anbi12i 621 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 621 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | ancom 453 | . 2 ⊢ ((𝜓 ∧ 𝜃) ↔ (𝜃 ∧ 𝜓)) | |
5 | 3, 4 | bitri 267 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 |
This theorem is referenced by: eu1 2662 compleq 3950 opelopabsbALT 5180 cnvpo 5892 f1cnvcnv 6325 fsplit 7519 cnvimadfsn 7541 oppcsect 16752 odupos 17450 oppr1 18950 ordtrest2 21337 wwlks2onsym 27248 3cyclfrgrrn1 27634 fusgr2wsp2nb 27683 mdsldmd1i 29715 oduprs 30172 ordtrest2NEW 30485 cnvco1 32163 cnvco2 32164 pocnv 32167 dfiota3 32543 brcup 32559 brcap 32560 trer 32823 bj-ssbequ2 33149 undmrnresiss 38693 dffrege115 39054 |
Copyright terms: Public domain | W3C validator |