| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version | ||
| Description: Variant of anbi12i 628 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 4 | 3 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eu1 2610 compleq 4132 cnvpo 6281 f1cnvcnv 6788 fsplit 8121 cnvimadfsn 8176 oppcsect 17796 oduprs 18317 odupos 18343 oppr1 20315 ordtrest2 23147 wwlks2onsym 29945 3cyclfrgrrn1 30271 fusgr2wsp2nb 30320 mdsldmd1i 32317 isunit2 33240 ordtrest2NEW 33959 cnvco1 35781 cnvco2 35782 pocnv 35785 dfiota3 35946 brcup 35962 brcap 35963 trer 36339 bj-nnfnt 36763 bj-gabima 36963 undmrnresiss 43595 dffrege115 43969 |
| Copyright terms: Public domain | W3C validator |