MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi12ci Structured version   Visualization version   GIF version

Theorem anbi12ci 629
Description: Variant of anbi12i 628 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
anbi12.1 (𝜑𝜓)
anbi12.2 (𝜒𝜃)
Assertion
Ref Expression
anbi12ci ((𝜑𝜒) ↔ (𝜃𝜓))

Proof of Theorem anbi12ci
StepHypRef Expression
1 anbi12.1 . . 3 (𝜑𝜓)
2 anbi12.2 . . 3 (𝜒𝜃)
31, 2anbi12i 628 . 2 ((𝜑𝜒) ↔ (𝜓𝜃))
43biancomi 462 1 ((𝜑𝜒) ↔ (𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  eu1  2604  compleq  4118  cnvpo  6263  f1cnvcnv  6768  fsplit  8099  cnvimadfsn  8154  oppcsect  17747  oduprs  18268  odupos  18294  oppr1  20266  ordtrest2  23098  wwlks2onsym  29895  3cyclfrgrrn1  30221  fusgr2wsp2nb  30270  mdsldmd1i  32267  isunit2  33198  ordtrest2NEW  33920  cnvco1  35753  cnvco2  35754  pocnv  35757  dfiota3  35918  brcup  35934  brcap  35935  trer  36311  bj-nnfnt  36735  bj-gabima  36935  undmrnresiss  43600  dffrege115  43974  pgnbgreunbgrlem1  48107  pgnbgreunbgrlem4  48113
  Copyright terms: Public domain W3C validator