| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version | ||
| Description: Variant of anbi12i 628 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 4 | 3 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eu1 2604 compleq 4118 cnvpo 6263 f1cnvcnv 6768 fsplit 8099 cnvimadfsn 8154 oppcsect 17747 oduprs 18268 odupos 18294 oppr1 20266 ordtrest2 23098 wwlks2onsym 29895 3cyclfrgrrn1 30221 fusgr2wsp2nb 30270 mdsldmd1i 32267 isunit2 33198 ordtrest2NEW 33920 cnvco1 35753 cnvco2 35754 pocnv 35757 dfiota3 35918 brcup 35934 brcap 35935 trer 36311 bj-nnfnt 36735 bj-gabima 36935 undmrnresiss 43600 dffrege115 43974 pgnbgreunbgrlem1 48107 pgnbgreunbgrlem4 48113 |
| Copyright terms: Public domain | W3C validator |