Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version |
Description: Variant of anbi12i 626 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 626 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | 3 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: eu1 2613 compleq 4086 cnvpo 6187 f1cnvcnv 6676 fsplit 7941 fsplitOLD 7942 cnvimadfsn 7972 oppcsect 17471 odupos 18027 oppr1 19857 ordtrest2 22336 wwlks2onsym 28302 3cyclfrgrrn1 28628 fusgr2wsp2nb 28677 mdsldmd1i 30672 oduprs 31221 ordtrest2NEW 31852 cnvco1 33705 cnvco2 33706 pocnv 33709 dfiota3 34204 brcup 34220 brcap 34221 trer 34484 bj-nnfnt 34901 bj-gabima 35107 undmrnresiss 41165 dffrege115 41539 |
Copyright terms: Public domain | W3C validator |