![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version |
Description: Variant of anbi12i 628 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | 3 | biancomi 464 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: eu1 2607 compleq 4148 cnvpo 6287 f1cnvcnv 6798 fsplit 8103 cnvimadfsn 8157 oppcsect 17725 odupos 18281 oppr1 20164 ordtrest2 22708 wwlks2onsym 29212 3cyclfrgrrn1 29538 fusgr2wsp2nb 29587 mdsldmd1i 31584 oduprs 32134 ordtrest2NEW 32903 cnvco1 34729 cnvco2 34730 pocnv 34733 dfiota3 34895 brcup 34911 brcap 34912 trer 35201 bj-nnfnt 35618 bj-gabima 35820 undmrnresiss 42355 dffrege115 42729 |
Copyright terms: Public domain | W3C validator |