| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version | ||
| Description: Variant of anbi12i 628 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 4 | 3 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eu1 2603 compleq 4103 cnvpo 6235 f1cnvcnv 6729 fsplit 8050 cnvimadfsn 8105 oppcsect 17685 oduprs 18206 odupos 18232 oppr1 20235 ordtrest2 23089 wwlks2onsym 29903 3cyclfrgrrn1 30229 fusgr2wsp2nb 30278 mdsldmd1i 32275 isunit2 33180 ordtrest2NEW 33890 cnvco1 35736 cnvco2 35737 pocnv 35740 dfiota3 35901 brcup 35917 brcap 35918 trer 36294 bj-nnfnt 36718 bj-gabima 36918 undmrnresiss 43581 dffrege115 43955 pgnbgreunbgrlem1 48101 pgnbgreunbgrlem4 48107 |
| Copyright terms: Public domain | W3C validator |