| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version | ||
| Description: Variant of anbi12i 628 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 4 | 3 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eu1 2603 compleq 4115 cnvpo 6260 f1cnvcnv 6765 fsplit 8096 cnvimadfsn 8151 oppcsect 17740 oduprs 18261 odupos 18287 oppr1 20259 ordtrest2 23091 wwlks2onsym 29888 3cyclfrgrrn1 30214 fusgr2wsp2nb 30263 mdsldmd1i 32260 isunit2 33191 ordtrest2NEW 33913 cnvco1 35746 cnvco2 35747 pocnv 35750 dfiota3 35911 brcup 35927 brcap 35928 trer 36304 bj-nnfnt 36728 bj-gabima 36928 undmrnresiss 43593 dffrege115 43967 pgnbgreunbgrlem1 48103 pgnbgreunbgrlem4 48109 |
| Copyright terms: Public domain | W3C validator |