Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version |
Description: Variant of anbi12i 628 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | 3 | biancomi 464 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: eu1 2610 compleq 4088 cnvpo 6205 f1cnvcnv 6710 fsplit 7989 cnvimadfsn 8019 oppcsect 17539 odupos 18095 oppr1 19925 ordtrest2 22404 wwlks2onsym 28372 3cyclfrgrrn1 28698 fusgr2wsp2nb 28747 mdsldmd1i 30742 oduprs 31291 ordtrest2NEW 31922 cnvco1 33775 cnvco2 33776 pocnv 33779 dfiota3 34274 brcup 34290 brcap 34291 trer 34554 bj-nnfnt 34971 bj-gabima 35176 undmrnresiss 41425 dffrege115 41799 |
Copyright terms: Public domain | W3C validator |