| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version | ||
| Description: Variant of anbi12i 628 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 4 | 3 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eu1 2605 compleq 4099 cnvpo 6234 f1cnvcnv 6728 fsplit 8047 cnvimadfsn 8102 oppcsect 17685 oduprs 18206 odupos 18232 oppr1 20268 ordtrest2 23119 wwlks2onsym 29938 3cyclfrgrrn1 30265 fusgr2wsp2nb 30314 mdsldmd1i 32311 isunit2 33207 ordtrest2NEW 33936 cnvco1 35803 cnvco2 35804 pocnv 35807 dfiota3 35965 brcup 35981 brcap 35982 trer 36360 bj-nnfnt 36784 bj-gabima 36984 undmrnresiss 43707 dffrege115 44081 pgnbgreunbgrlem1 48223 pgnbgreunbgrlem4 48229 |
| Copyright terms: Public domain | W3C validator |