| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version | ||
| Description: Variant of anbi12i 628 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
| anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 4 | 3 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eu1 2603 compleq 4111 cnvpo 6248 f1cnvcnv 6747 fsplit 8073 cnvimadfsn 8128 oppcsect 17720 oduprs 18241 odupos 18267 oppr1 20270 ordtrest2 23124 wwlks2onsym 29938 3cyclfrgrrn1 30264 fusgr2wsp2nb 30313 mdsldmd1i 32310 isunit2 33207 ordtrest2NEW 33906 cnvco1 35739 cnvco2 35740 pocnv 35743 dfiota3 35904 brcup 35920 brcap 35921 trer 36297 bj-nnfnt 36721 bj-gabima 36921 undmrnresiss 43586 dffrege115 43960 pgnbgreunbgrlem1 48096 pgnbgreunbgrlem4 48102 |
| Copyright terms: Public domain | W3C validator |