MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi12ci Structured version   Visualization version   GIF version

Theorem anbi12ci 629
Description: Variant of anbi12i 628 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
anbi12.1 (𝜑𝜓)
anbi12.2 (𝜒𝜃)
Assertion
Ref Expression
anbi12ci ((𝜑𝜒) ↔ (𝜃𝜓))

Proof of Theorem anbi12ci
StepHypRef Expression
1 anbi12.1 . . 3 (𝜑𝜓)
2 anbi12.2 . . 3 (𝜒𝜃)
31, 2anbi12i 628 . 2 ((𝜑𝜒) ↔ (𝜓𝜃))
43biancomi 462 1 ((𝜑𝜒) ↔ (𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  eu1  2603  compleq  4115  cnvpo  6260  f1cnvcnv  6765  fsplit  8096  cnvimadfsn  8151  oppcsect  17740  oduprs  18261  odupos  18287  oppr1  20259  ordtrest2  23091  wwlks2onsym  29888  3cyclfrgrrn1  30214  fusgr2wsp2nb  30263  mdsldmd1i  32260  isunit2  33191  ordtrest2NEW  33913  cnvco1  35746  cnvco2  35747  pocnv  35750  dfiota3  35911  brcup  35927  brcap  35928  trer  36304  bj-nnfnt  36728  bj-gabima  36928  undmrnresiss  43593  dffrege115  43967  pgnbgreunbgrlem1  48103  pgnbgreunbgrlem4  48109
  Copyright terms: Public domain W3C validator