![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version |
Description: Variant of anbi12i 628 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | 3 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: eu1 2608 compleq 4162 cnvpo 6309 f1cnvcnv 6814 fsplit 8141 cnvimadfsn 8196 oppcsect 17826 oduprs 18358 odupos 18386 oppr1 20367 ordtrest2 23228 wwlks2onsym 29988 3cyclfrgrrn1 30314 fusgr2wsp2nb 30363 mdsldmd1i 32360 isunit2 33230 ordtrest2NEW 33884 cnvco1 35739 cnvco2 35740 pocnv 35743 dfiota3 35905 brcup 35921 brcap 35922 trer 36299 bj-nnfnt 36723 bj-gabima 36923 undmrnresiss 43594 dffrege115 43968 |
Copyright terms: Public domain | W3C validator |