Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version |
Description: Variant of anbi12i 630 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 630 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | 3 | biancomi 466 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: eu1 2613 compleq 4038 cnvpo 6119 f1cnvcnv 6584 fsplit 7838 fsplitOLD 7839 cnvimadfsn 7867 oppcsect 17153 odupos 17861 oppr1 19506 ordtrest2 21955 wwlks2onsym 27896 3cyclfrgrrn1 28222 fusgr2wsp2nb 28271 mdsldmd1i 30266 oduprs 30816 ordtrest2NEW 31445 cnvco1 33298 cnvco2 33299 pocnv 33302 dfiota3 33863 brcup 33879 brcap 33880 trer 34143 bj-nnfnt 34560 undmrnresiss 40757 dffrege115 41132 |
Copyright terms: Public domain | W3C validator |