![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version |
Description: Variant of anbi12i 627 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 627 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | 3 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: eu1 2613 compleq 4175 cnvpo 6318 f1cnvcnv 6826 fsplit 8158 cnvimadfsn 8213 oppcsect 17839 odupos 18398 oppr1 20376 ordtrest2 23233 wwlks2onsym 29991 3cyclfrgrrn1 30317 fusgr2wsp2nb 30366 mdsldmd1i 32363 oduprs 32937 isunit2 33220 ordtrest2NEW 33869 cnvco1 35721 cnvco2 35722 pocnv 35725 dfiota3 35887 brcup 35903 brcap 35904 trer 36282 bj-nnfnt 36706 bj-gabima 36906 undmrnresiss 43566 dffrege115 43940 |
Copyright terms: Public domain | W3C validator |