![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anbi12ci | Structured version Visualization version GIF version |
Description: Variant of anbi12i 626 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (𝜑 ↔ 𝜓) |
anbi12.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
anbi12ci | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | anbi12.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | anbi12i 626 | . 2 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
4 | 3 | biancomi 462 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: eu1 2601 compleq 4143 cnvpo 6285 f1cnvcnv 6797 fsplit 8116 cnvimadfsn 8170 oppcsect 17752 odupos 18311 oppr1 20278 ordtrest2 23095 wwlks2onsym 29756 3cyclfrgrrn1 30082 fusgr2wsp2nb 30131 mdsldmd1i 32128 oduprs 32673 ordtrest2NEW 33460 cnvco1 35289 cnvco2 35290 pocnv 35293 dfiota3 35455 brcup 35471 brcap 35472 trer 35736 bj-nnfnt 36153 bj-gabima 36354 undmrnresiss 42957 dffrege115 43331 |
Copyright terms: Public domain | W3C validator |