MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi12ci Structured version   Visualization version   GIF version

Theorem anbi12ci 627
Description: Variant of anbi12i 626 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
anbi12.1 (𝜑𝜓)
anbi12.2 (𝜒𝜃)
Assertion
Ref Expression
anbi12ci ((𝜑𝜒) ↔ (𝜃𝜓))

Proof of Theorem anbi12ci
StepHypRef Expression
1 anbi12.1 . . 3 (𝜑𝜓)
2 anbi12.2 . . 3 (𝜒𝜃)
31, 2anbi12i 626 . 2 ((𝜑𝜒) ↔ (𝜓𝜃))
43biancomi 462 1 ((𝜑𝜒) ↔ (𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  eu1  2613  compleq  4086  cnvpo  6187  f1cnvcnv  6676  fsplit  7941  fsplitOLD  7942  cnvimadfsn  7972  oppcsect  17471  odupos  18027  oppr1  19857  ordtrest2  22336  wwlks2onsym  28302  3cyclfrgrrn1  28628  fusgr2wsp2nb  28677  mdsldmd1i  30672  oduprs  31221  ordtrest2NEW  31852  cnvco1  33705  cnvco2  33706  pocnv  33709  dfiota3  34204  brcup  34220  brcap  34221  trer  34484  bj-nnfnt  34901  bj-gabima  35107  undmrnresiss  41165  dffrege115  41539
  Copyright terms: Public domain W3C validator