Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsexvwd Structured version   Visualization version   GIF version

Theorem bj-equsexvwd 34890
Description: Variant of equsexvw 2009. (Contributed by BJ, 7-Oct-2024.)
Hypotheses
Ref Expression
bj-equsexvwd.nf0 (𝜑 → ∀𝑥𝜑)
bj-equsexvwd.nf (𝜑 → Ⅎ'𝑥𝜒)
bj-equsexvwd.is ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
bj-equsexvwd (𝜑 → (∃𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem bj-equsexvwd
StepHypRef Expression
1 alinexa 1846 . . 3 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝑥 = 𝑦𝜓))
2 bj-equsexvwd.nf0 . . . 4 (𝜑 → ∀𝑥𝜑)
3 bj-equsexvwd.nf . . . . 5 (𝜑 → Ⅎ'𝑥𝜒)
4 bj-nnfnt 34849 . . . . 5 (Ⅎ'𝑥𝜒 ↔ Ⅎ'𝑥 ¬ 𝜒)
53, 4sylib 217 . . . 4 (𝜑 → Ⅎ'𝑥 ¬ 𝜒)
6 bj-equsexvwd.is . . . . 5 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
76notbid 317 . . . 4 ((𝜑𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒))
82, 5, 7bj-equsalvwd 34889 . . 3 (𝜑 → (∀𝑥(𝑥 = 𝑦 → ¬ 𝜓) ↔ ¬ 𝜒))
91, 8bitr3id 284 . 2 (𝜑 → (¬ ∃𝑥(𝑥 = 𝑦𝜓) ↔ ¬ 𝜒))
109con4bid 316 1 (𝜑 → (∃𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537  wex 1783  Ⅎ'wnnf 34832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-bj-nnf 34833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator