Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-smgrpssmgm Structured version   Visualization version   GIF version

Theorem bj-smgrpssmgm 35366
Description: Semigroups are magmas. (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-smgrpssmgm Smgrp ⊆ Mgm

Proof of Theorem bj-smgrpssmgm
Dummy variables 𝑔 𝑏 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sgrp 18290 . 2 Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑝𝑦)𝑝𝑧) = (𝑥𝑝(𝑦𝑝𝑧))}
21ssrab3 4011 1 Smgrp ⊆ Mgm
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wral 3063  [wsbc 3711  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Mgmcmgm 18239  Smgrpcsgrp 18289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-sgrp 18290
This theorem is referenced by:  bj-smgrpssmgmel  35367
  Copyright terms: Public domain W3C validator