| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-smgrpssmgm | Structured version Visualization version GIF version | ||
| Description: Semigroups are magmas. (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-smgrpssmgm | ⊢ Smgrp ⊆ Mgm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sgrp 18637 | . 2 ⊢ Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑝𝑦)𝑝𝑧) = (𝑥𝑝(𝑦𝑝𝑧))} | |
| 2 | 1 | ssrab3 4033 | 1 ⊢ Smgrp ⊆ Mgm |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∀wral 3049 [wsbc 3738 ⊆ wss 3899 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 Mgmcmgm 18556 Smgrpcsgrp 18636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-ss 3916 df-sgrp 18637 |
| This theorem is referenced by: bj-smgrpssmgmel 37324 |
| Copyright terms: Public domain | W3C validator |