Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-smgrpssmgm Structured version   Visualization version   GIF version

Theorem bj-smgrpssmgm 37226
Description: Semigroups are magmas. (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-smgrpssmgm Smgrp ⊆ Mgm

Proof of Theorem bj-smgrpssmgm
Dummy variables 𝑔 𝑏 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sgrp 18751 . 2 Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑝𝑦)𝑝𝑧) = (𝑥𝑝(𝑦𝑝𝑧))}
21ssrab3 4105 1 Smgrp ⊆ Mgm
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wral 3067  [wsbc 3804  wss 3976  cfv 6568  (class class class)co 7443  Basecbs 17252  +gcplusg 17305  Mgmcmgm 18670  Smgrpcsgrp 18750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-ss 3993  df-sgrp 18751
This theorem is referenced by:  bj-smgrpssmgmel  37227
  Copyright terms: Public domain W3C validator