Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-smgrpssmgm Structured version   Visualization version   GIF version

Theorem bj-smgrpssmgm 36639
Description: Semigroups are magmas. (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-smgrpssmgm Smgrp ⊆ Mgm

Proof of Theorem bj-smgrpssmgm
Dummy variables 𝑔 𝑏 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sgrp 18642 . 2 Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑝𝑦)𝑝𝑧) = (𝑥𝑝(𝑦𝑝𝑧))}
21ssrab3 4072 1 Smgrp ⊆ Mgm
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wral 3053  [wsbc 3769  wss 3940  cfv 6533  (class class class)co 7401  Basecbs 17143  +gcplusg 17196  Mgmcmgm 18561  Smgrpcsgrp 18641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-in 3947  df-ss 3957  df-sgrp 18642
This theorem is referenced by:  bj-smgrpssmgmel  36640
  Copyright terms: Public domain W3C validator