| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-smgrpssmgm | Structured version Visualization version GIF version | ||
| Description: Semigroups are magmas. (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-smgrpssmgm | ⊢ Smgrp ⊆ Mgm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sgrp 18619 | . 2 ⊢ Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑝𝑦)𝑝𝑧) = (𝑥𝑝(𝑦𝑝𝑧))} | |
| 2 | 1 | ssrab3 4030 | 1 ⊢ Smgrp ⊆ Mgm |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∀wral 3045 [wsbc 3739 ⊆ wss 3900 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 Mgmcmgm 18538 Smgrpcsgrp 18618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-ss 3917 df-sgrp 18619 |
| This theorem is referenced by: bj-smgrpssmgmel 37282 |
| Copyright terms: Public domain | W3C validator |