![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-smgrpssmgm | Structured version Visualization version GIF version |
Description: Semigroups are magmas. (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-smgrpssmgm | ⊢ Smgrp ⊆ Mgm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sgrp 18647 | . 2 ⊢ Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑝𝑦)𝑝𝑧) = (𝑥𝑝(𝑦𝑝𝑧))} | |
2 | 1 | ssrab3 4080 | 1 ⊢ Smgrp ⊆ Mgm |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∀wral 3060 [wsbc 3777 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 Mgmcmgm 18566 Smgrpcsgrp 18646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-in 3955 df-ss 3965 df-sgrp 18647 |
This theorem is referenced by: bj-smgrpssmgmel 36466 |
Copyright terms: Public domain | W3C validator |