| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-smgrpssmgm | Structured version Visualization version GIF version | ||
| Description: Semigroups are magmas. (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-smgrpssmgm | ⊢ Smgrp ⊆ Mgm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sgrp 18695 | . 2 ⊢ Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑝𝑦)𝑝𝑧) = (𝑥𝑝(𝑦𝑝𝑧))} | |
| 2 | 1 | ssrab3 4057 | 1 ⊢ Smgrp ⊆ Mgm |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∀wral 3051 [wsbc 3765 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 Mgmcmgm 18614 Smgrpcsgrp 18694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-ss 3943 df-sgrp 18695 |
| This theorem is referenced by: bj-smgrpssmgmel 37233 |
| Copyright terms: Public domain | W3C validator |