Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-smgrpssmgm Structured version   Visualization version   GIF version

Theorem bj-smgrpssmgm 35439
Description: Semigroups are magmas. (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-smgrpssmgm Smgrp ⊆ Mgm

Proof of Theorem bj-smgrpssmgm
Dummy variables 𝑔 𝑏 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sgrp 18375 . 2 Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑝𝑦)𝑝𝑧) = (𝑥𝑝(𝑦𝑝𝑧))}
21ssrab3 4015 1 Smgrp ⊆ Mgm
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wral 3064  [wsbc 3716  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Mgmcmgm 18324  Smgrpcsgrp 18374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-sgrp 18375
This theorem is referenced by:  bj-smgrpssmgmel  35440
  Copyright terms: Public domain W3C validator