![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-smgrpssmgm | Structured version Visualization version GIF version |
Description: Semigroups are magmas. (Contributed by BJ, 12-Apr-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-smgrpssmgm | ⊢ Smgrp ⊆ Mgm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sgrp 18751 | . 2 ⊢ Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑝𝑦)𝑝𝑧) = (𝑥𝑝(𝑦𝑝𝑧))} | |
2 | 1 | ssrab3 4105 | 1 ⊢ Smgrp ⊆ Mgm |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∀wral 3067 [wsbc 3804 ⊆ wss 3976 ‘cfv 6568 (class class class)co 7443 Basecbs 17252 +gcplusg 17305 Mgmcmgm 18670 Smgrpcsgrp 18750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-sgrp 18751 |
This theorem is referenced by: bj-smgrpssmgmel 37227 |
Copyright terms: Public domain | W3C validator |