Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsexval | Structured version Visualization version GIF version |
Description: Special case of equsexv 2263 proved from core axioms, ax-10 2139 (modal5), and hba1 2293 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-equsexval.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓)) |
Ref | Expression |
---|---|
bj-equsexval | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsexval.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓)) | |
2 | 1 | pm5.32i 574 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝑦 ∧ ∀𝑥𝜓)) |
3 | 2 | exbii 1851 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑥𝜓)) |
4 | ax6ev 1974 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
5 | bj-19.41al 34767 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑥𝜓) ↔ (∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜓)) | |
6 | 4, 5 | mpbiran 705 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑥𝜓) ↔ ∀𝑥𝜓) |
7 | 3, 6 | bitri 274 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |