Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsexval | Structured version Visualization version GIF version |
Description: Special case of equsexv 2260 proved from core axioms, ax-10 2137 (modal5), and hba1 2290 (modal4). (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-equsexval.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓)) |
Ref | Expression |
---|---|
bj-equsexval | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-equsexval.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥𝜓)) | |
2 | 1 | pm5.32i 575 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝑦 ∧ ∀𝑥𝜓)) |
3 | 2 | exbii 1850 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑥𝜓)) |
4 | ax6ev 1973 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
5 | bj-19.41al 34840 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑥𝜓) ↔ (∃𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝜓)) | |
6 | 4, 5 | mpbiran 706 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑥𝜓) ↔ ∀𝑥𝜓) |
7 | 3, 6 | bitri 274 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |