|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1209 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1209.1 | ⊢ (𝜒 → ∃𝑥 ∈ 𝐵 𝜑) | 
| bnj1209.2 | ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑)) | 
| Ref | Expression | 
|---|---|
| bnj1209 | ⊢ (𝜒 → ∃𝑥𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1209.1 | . . . . 5 ⊢ (𝜒 → ∃𝑥 ∈ 𝐵 𝜑) | |
| 2 | 1 | bnj1196 34808 | . . . 4 ⊢ (𝜒 → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | 
| 3 | 2 | ancli 548 | . . 3 ⊢ (𝜒 → (𝜒 ∧ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | 
| 4 | 19.42v 1953 | . . 3 ⊢ (∃𝑥(𝜒 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (𝜒 ∧ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ (𝜒 → ∃𝑥(𝜒 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | 
| 6 | bnj1209.2 | . . 3 ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 7 | 3anass 1095 | . . 3 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝜒 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 8 | 6, 7 | bitri 275 | . 2 ⊢ (𝜃 ↔ (𝜒 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | 
| 9 | 5, 8 | bnj1198 34809 | 1 ⊢ (𝜒 → ∃𝑥𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∃wex 1779 ∈ wcel 2108 ∃wrex 3070 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1780 df-rex 3071 | 
| This theorem is referenced by: bnj1501 35081 bnj1523 35085 | 
| Copyright terms: Public domain | W3C validator |