Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1441g Structured version   Visualization version   GIF version

Theorem bnj1441g 34853
Description: First-order logic and set theory. See bnj1441 34852 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1441g.1 (𝑥𝐴 → ∀𝑦 𝑥𝐴)
bnj1441g.2 (𝜑 → ∀𝑦𝜑)
Assertion
Ref Expression
bnj1441g (𝑧 ∈ {𝑥𝐴𝜑} → ∀𝑦 𝑧 ∈ {𝑥𝐴𝜑})
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem bnj1441g
StepHypRef Expression
1 df-rab 3396 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 bnj1441g.1 . . . 4 (𝑥𝐴 → ∀𝑦 𝑥𝐴)
3 bnj1441g.2 . . . 4 (𝜑 → ∀𝑦𝜑)
42, 3hban 2302 . . 3 ((𝑥𝐴𝜑) → ∀𝑦(𝑥𝐴𝜑))
54hbabg 2720 . 2 (𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)} → ∀𝑦 𝑧 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
61, 5hbxfreq 2861 1 (𝑧 ∈ {𝑥𝐴𝜑} → ∀𝑦 𝑧 ∈ {𝑥𝐴𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wcel 2111  {cab 2709  {crab 3395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator