Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1452 Structured version   Visualization version   GIF version

Theorem bnj1452 35042
Description: Technical lemma for bnj60 35052. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1452.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1452.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1452.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1452.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1452.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1452.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1452.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1452.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1452.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1452.10 𝑃 = 𝐻
bnj1452.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1452.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1452.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1452.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1452 (𝜒𝐸𝐵)
Distinct variable groups:   𝐴,𝑑,𝑥,𝑧   𝐸,𝑑,𝑧   𝑅,𝑑,𝑥,𝑧   𝜒,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑦,𝑓)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑅(𝑦,𝑓)   𝐸(𝑥,𝑦,𝑓)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1452
StepHypRef Expression
1 bnj1452.14 . . 3 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
2 bnj1452.5 . . . . . 6 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
3 bnj1452.7 . . . . . 6 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
42, 3bnj1212 34789 . . . . 5 (𝜒𝑥𝐴)
54snssd 4773 . . . 4 (𝜒 → {𝑥} ⊆ 𝐴)
6 bnj1147 34984 . . . . 5 trCl(𝑥, 𝐴, 𝑅) ⊆ 𝐴
76a1i 11 . . . 4 (𝜒 → trCl(𝑥, 𝐴, 𝑅) ⊆ 𝐴)
85, 7unssd 4155 . . 3 (𝜒 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ⊆ 𝐴)
91, 8eqsstrid 3985 . 2 (𝜒𝐸𝐴)
10 elsni 4606 . . . . . . . 8 (𝑧 ∈ {𝑥} → 𝑧 = 𝑥)
1110adantl 481 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → 𝑧 = 𝑥)
12 bnj602 34905 . . . . . . 7 (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅))
1311, 12syl 17 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅))
14 bnj1452.6 . . . . . . . . . 10 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
1514simplbi 497 . . . . . . . . 9 (𝜓𝑅 FrSe 𝐴)
163, 15bnj835 34749 . . . . . . . 8 (𝜒𝑅 FrSe 𝐴)
17 bnj906 34920 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
1816, 4, 17syl2anc 584 . . . . . . 7 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
1918ad2antrr 726 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
2013, 19eqsstrd 3981 . . . . 5 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
21 ssun4 4144 . . . . . 6 ( pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅) → pred(𝑧, 𝐴, 𝑅) ⊆ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
2221, 1sseqtrrdi 3988 . . . . 5 ( pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
2320, 22syl 17 . . . 4 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
2416ad2antrr 726 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
25 simpr 484 . . . . . . . 8 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))
266, 25bnj1213 34788 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑧𝐴)
27 bnj906 34920 . . . . . . 7 ((𝑅 FrSe 𝐴𝑧𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
2824, 26, 27syl2anc 584 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
294ad2antrr 726 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑥𝐴)
30 bnj1125 34982 . . . . . . 7 ((𝑅 FrSe 𝐴𝑥𝐴𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3124, 29, 25, 30syl3anc 1373 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3228, 31sstrd 3957 . . . . 5 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3332, 22syl 17 . . . 4 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
341bnj1424 34828 . . . . 5 (𝑧𝐸 → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
3534adantl 481 . . . 4 ((𝜒𝑧𝐸) → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
3623, 33, 35mpjaodan 960 . . 3 ((𝜒𝑧𝐸) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
3736ralrimiva 3125 . 2 (𝜒 → ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
38 vsnex 5389 . . . . . . . 8 {𝑥} ∈ V
3938a1i 11 . . . . . . 7 (𝜒 → {𝑥} ∈ V)
40 bnj893 34918 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → trCl(𝑥, 𝐴, 𝑅) ∈ V)
4116, 4, 40syl2anc 584 . . . . . . 7 (𝜒 → trCl(𝑥, 𝐴, 𝑅) ∈ V)
4239, 41bnj1149 34782 . . . . . 6 (𝜒 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ∈ V)
431, 42eqeltrid 2832 . . . . 5 (𝜒𝐸 ∈ V)
44 bnj1452.1 . . . . . 6 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
4544bnj1454 34832 . . . . 5 (𝐸 ∈ V → (𝐸𝐵[𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)))
4643, 45syl 17 . . . 4 (𝜒 → (𝐸𝐵[𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)))
47 bnj602 34905 . . . . . . . 8 (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅))
4847sseq1d 3978 . . . . . . 7 (𝑥 = 𝑧 → ( pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))
4948cbvralvw 3215 . . . . . 6 (∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)
5049anbi2i 623 . . . . 5 ((𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))
5150sbcbii 3810 . . . 4 ([𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) ↔ [𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))
5246, 51bitrdi 287 . . 3 (𝜒 → (𝐸𝐵[𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)))
53 sseq1 3972 . . . . . 6 (𝑑 = 𝐸 → (𝑑𝐴𝐸𝐴))
54 sseq2 3973 . . . . . . 7 (𝑑 = 𝐸 → ( pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))
5554raleqbi1dv 3311 . . . . . 6 (𝑑 = 𝐸 → (∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))
5653, 55anbi12d 632 . . . . 5 (𝑑 = 𝐸 → ((𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
5756sbcieg 3793 . . . 4 (𝐸 ∈ V → ([𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
5843, 57syl 17 . . 3 (𝜒 → ([𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
5952, 58bitrd 279 . 2 (𝜒 → (𝐸𝐵 ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
609, 37, 59mpbir2and 713 1 (𝜒𝐸𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  [wsbc 3753  cun 3912  wss 3914  c0 4296  {csn 4589  cop 4595   cuni 4871   class class class wbr 5107  dom cdm 5638  cres 5640   Fn wfn 6506  cfv 6511   predc-bnj14 34678   FrSe w-bnj15 34682   trClc-bnj18 34684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-bnj17 34677  df-bnj14 34679  df-bnj13 34681  df-bnj15 34683  df-bnj18 34685  df-bnj19 34687
This theorem is referenced by:  bnj1312  35048
  Copyright terms: Public domain W3C validator