Proof of Theorem bnj1452
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bnj1452.14 | . . 3
⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) | 
| 2 |  | bnj1452.5 | . . . . . 6
⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | 
| 3 |  | bnj1452.7 | . . . . . 6
⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | 
| 4 | 2, 3 | bnj1212 34814 | . . . . 5
⊢ (𝜒 → 𝑥 ∈ 𝐴) | 
| 5 | 4 | snssd 4808 | . . . 4
⊢ (𝜒 → {𝑥} ⊆ 𝐴) | 
| 6 |  | bnj1147 35009 | . . . . 5
⊢ 
trCl(𝑥, 𝐴, 𝑅) ⊆ 𝐴 | 
| 7 | 6 | a1i 11 | . . . 4
⊢ (𝜒 → trCl(𝑥, 𝐴, 𝑅) ⊆ 𝐴) | 
| 8 | 5, 7 | unssd 4191 | . . 3
⊢ (𝜒 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ⊆ 𝐴) | 
| 9 | 1, 8 | eqsstrid 4021 | . 2
⊢ (𝜒 → 𝐸 ⊆ 𝐴) | 
| 10 |  | elsni 4642 | . . . . . . . 8
⊢ (𝑧 ∈ {𝑥} → 𝑧 = 𝑥) | 
| 11 | 10 | adantl 481 | . . . . . . 7
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → 𝑧 = 𝑥) | 
| 12 |  | bnj602 34930 | . . . . . . 7
⊢ (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅)) | 
| 13 | 11, 12 | syl 17 | . . . . . 6
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅)) | 
| 14 |  | bnj1452.6 | . . . . . . . . . 10
⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | 
| 15 | 14 | simplbi 497 | . . . . . . . . 9
⊢ (𝜓 → 𝑅 FrSe 𝐴) | 
| 16 | 3, 15 | bnj835 34774 | . . . . . . . 8
⊢ (𝜒 → 𝑅 FrSe 𝐴) | 
| 17 |  | bnj906 34945 | . . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | 
| 18 | 16, 4, 17 | syl2anc 584 | . . . . . . 7
⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | 
| 19 | 18 | ad2antrr 726 | . . . . . 6
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | 
| 20 | 13, 19 | eqsstrd 4017 | . . . . 5
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | 
| 21 |  | ssun4 4180 | . . . . . 6
⊢ (
pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅) → pred(𝑧, 𝐴, 𝑅) ⊆ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | 
| 22 | 21, 1 | sseqtrrdi 4024 | . . . . 5
⊢ (
pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸) | 
| 23 | 20, 22 | syl 17 | . . . 4
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸) | 
| 24 | 16 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴) | 
| 25 |  | simpr 484 | . . . . . . . 8
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) | 
| 26 | 6, 25 | bnj1213 34813 | . . . . . . 7
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑧 ∈ 𝐴) | 
| 27 |  | bnj906 34945 | . . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅)) | 
| 28 | 24, 26, 27 | syl2anc 584 | . . . . . 6
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅)) | 
| 29 | 4 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑥 ∈ 𝐴) | 
| 30 |  | bnj1125 35007 | . . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | 
| 31 | 24, 29, 25, 30 | syl3anc 1372 | . . . . . 6
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | 
| 32 | 28, 31 | sstrd 3993 | . . . . 5
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | 
| 33 | 32, 22 | syl 17 | . . . 4
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸) | 
| 34 | 1 | bnj1424 34853 | . . . . 5
⊢ (𝑧 ∈ 𝐸 → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) | 
| 35 | 34 | adantl 481 | . . . 4
⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) | 
| 36 | 23, 33, 35 | mpjaodan 960 | . . 3
⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸) | 
| 37 | 36 | ralrimiva 3145 | . 2
⊢ (𝜒 → ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸) | 
| 38 |  | vsnex 5433 | . . . . . . . 8
⊢ {𝑥} ∈ V | 
| 39 | 38 | a1i 11 | . . . . . . 7
⊢ (𝜒 → {𝑥} ∈ V) | 
| 40 |  | bnj893 34943 | . . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → trCl(𝑥, 𝐴, 𝑅) ∈ V) | 
| 41 | 16, 4, 40 | syl2anc 584 | . . . . . . 7
⊢ (𝜒 → trCl(𝑥, 𝐴, 𝑅) ∈ V) | 
| 42 | 39, 41 | bnj1149 34807 | . . . . . 6
⊢ (𝜒 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ∈ V) | 
| 43 | 1, 42 | eqeltrid 2844 | . . . . 5
⊢ (𝜒 → 𝐸 ∈ V) | 
| 44 |  | bnj1452.1 | . . . . . 6
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | 
| 45 | 44 | bnj1454 34857 | . . . . 5
⊢ (𝐸 ∈ V → (𝐸 ∈ 𝐵 ↔ [𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))) | 
| 46 | 43, 45 | syl 17 | . . . 4
⊢ (𝜒 → (𝐸 ∈ 𝐵 ↔ [𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))) | 
| 47 |  | bnj602 34930 | . . . . . . . 8
⊢ (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅)) | 
| 48 | 47 | sseq1d 4014 | . . . . . . 7
⊢ (𝑥 = 𝑧 → ( pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)) | 
| 49 | 48 | cbvralvw 3236 | . . . . . 6
⊢
(∀𝑥 ∈
𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) | 
| 50 | 49 | anbi2i 623 | . . . . 5
⊢ ((𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)) | 
| 51 | 50 | sbcbii 3845 | . . . 4
⊢
([𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) ↔ [𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)) | 
| 52 | 46, 51 | bitrdi 287 | . . 3
⊢ (𝜒 → (𝐸 ∈ 𝐵 ↔ [𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))) | 
| 53 |  | sseq1 4008 | . . . . . 6
⊢ (𝑑 = 𝐸 → (𝑑 ⊆ 𝐴 ↔ 𝐸 ⊆ 𝐴)) | 
| 54 |  | sseq2 4009 | . . . . . . 7
⊢ (𝑑 = 𝐸 → ( pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)) | 
| 55 | 54 | raleqbi1dv 3337 | . . . . . 6
⊢ (𝑑 = 𝐸 → (∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)) | 
| 56 | 53, 55 | anbi12d 632 | . . . . 5
⊢ (𝑑 = 𝐸 → ((𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))) | 
| 57 | 56 | sbcieg 3827 | . . . 4
⊢ (𝐸 ∈ V → ([𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))) | 
| 58 | 43, 57 | syl 17 | . . 3
⊢ (𝜒 → ([𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))) | 
| 59 | 52, 58 | bitrd 279 | . 2
⊢ (𝜒 → (𝐸 ∈ 𝐵 ↔ (𝐸 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))) | 
| 60 | 9, 37, 59 | mpbir2and 713 | 1
⊢ (𝜒 → 𝐸 ∈ 𝐵) |