Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1452 Structured version   Visualization version   GIF version

Theorem bnj1452 33032
Description: Technical lemma for bnj60 33042. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1452.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1452.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1452.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1452.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1452.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1452.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1452.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1452.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1452.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1452.10 𝑃 = 𝐻
bnj1452.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1452.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1452.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1452.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1452 (𝜒𝐸𝐵)
Distinct variable groups:   𝐴,𝑑,𝑥,𝑧   𝐸,𝑑,𝑧   𝑅,𝑑,𝑥,𝑧   𝜒,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑦,𝑓)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑅(𝑦,𝑓)   𝐸(𝑥,𝑦,𝑓)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1452
StepHypRef Expression
1 bnj1452.14 . . 3 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
2 bnj1452.5 . . . . . 6 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
3 bnj1452.7 . . . . . 6 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
42, 3bnj1212 32779 . . . . 5 (𝜒𝑥𝐴)
54snssd 4742 . . . 4 (𝜒 → {𝑥} ⊆ 𝐴)
6 bnj1147 32974 . . . . 5 trCl(𝑥, 𝐴, 𝑅) ⊆ 𝐴
76a1i 11 . . . 4 (𝜒 → trCl(𝑥, 𝐴, 𝑅) ⊆ 𝐴)
85, 7unssd 4120 . . 3 (𝜒 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ⊆ 𝐴)
91, 8eqsstrid 3969 . 2 (𝜒𝐸𝐴)
10 elsni 4578 . . . . . . . 8 (𝑧 ∈ {𝑥} → 𝑧 = 𝑥)
1110adantl 482 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → 𝑧 = 𝑥)
12 bnj602 32895 . . . . . . 7 (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅))
1311, 12syl 17 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅))
14 bnj1452.6 . . . . . . . . . 10 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
1514simplbi 498 . . . . . . . . 9 (𝜓𝑅 FrSe 𝐴)
163, 15bnj835 32739 . . . . . . . 8 (𝜒𝑅 FrSe 𝐴)
17 bnj906 32910 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
1816, 4, 17syl2anc 584 . . . . . . 7 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
1918ad2antrr 723 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
2013, 19eqsstrd 3959 . . . . 5 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
21 ssun4 4109 . . . . . 6 ( pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅) → pred(𝑧, 𝐴, 𝑅) ⊆ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
2221, 1sseqtrrdi 3972 . . . . 5 ( pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
2320, 22syl 17 . . . 4 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
2416ad2antrr 723 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
25 simpr 485 . . . . . . . 8 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))
266, 25bnj1213 32778 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑧𝐴)
27 bnj906 32910 . . . . . . 7 ((𝑅 FrSe 𝐴𝑧𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
2824, 26, 27syl2anc 584 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
294ad2antrr 723 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑥𝐴)
30 bnj1125 32972 . . . . . . 7 ((𝑅 FrSe 𝐴𝑥𝐴𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3124, 29, 25, 30syl3anc 1370 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3228, 31sstrd 3931 . . . . 5 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3332, 22syl 17 . . . 4 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
341bnj1424 32818 . . . . 5 (𝑧𝐸 → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
3534adantl 482 . . . 4 ((𝜒𝑧𝐸) → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
3623, 33, 35mpjaodan 956 . . 3 ((𝜒𝑧𝐸) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
3736ralrimiva 3103 . 2 (𝜒 → ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
38 snex 5354 . . . . . . . 8 {𝑥} ∈ V
3938a1i 11 . . . . . . 7 (𝜒 → {𝑥} ∈ V)
40 bnj893 32908 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → trCl(𝑥, 𝐴, 𝑅) ∈ V)
4116, 4, 40syl2anc 584 . . . . . . 7 (𝜒 → trCl(𝑥, 𝐴, 𝑅) ∈ V)
4239, 41bnj1149 32772 . . . . . 6 (𝜒 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ∈ V)
431, 42eqeltrid 2843 . . . . 5 (𝜒𝐸 ∈ V)
44 bnj1452.1 . . . . . 6 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
4544bnj1454 32822 . . . . 5 (𝐸 ∈ V → (𝐸𝐵[𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)))
4643, 45syl 17 . . . 4 (𝜒 → (𝐸𝐵[𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)))
47 bnj602 32895 . . . . . . . 8 (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅))
4847sseq1d 3952 . . . . . . 7 (𝑥 = 𝑧 → ( pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))
4948cbvralvw 3383 . . . . . 6 (∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)
5049anbi2i 623 . . . . 5 ((𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))
5150sbcbii 3776 . . . 4 ([𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) ↔ [𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))
5246, 51bitrdi 287 . . 3 (𝜒 → (𝐸𝐵[𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)))
53 sseq1 3946 . . . . . 6 (𝑑 = 𝐸 → (𝑑𝐴𝐸𝐴))
54 sseq2 3947 . . . . . . 7 (𝑑 = 𝐸 → ( pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))
5554raleqbi1dv 3340 . . . . . 6 (𝑑 = 𝐸 → (∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))
5653, 55anbi12d 631 . . . . 5 (𝑑 = 𝐸 → ((𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
5756sbcieg 3756 . . . 4 (𝐸 ∈ V → ([𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
5843, 57syl 17 . . 3 (𝜒 → ([𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
5952, 58bitrd 278 . 2 (𝜒 → (𝐸𝐵 ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
609, 37, 59mpbir2and 710 1 (𝜒𝐸𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  [wsbc 3716  cun 3885  wss 3887  c0 4256  {csn 4561  cop 4567   cuni 4839   class class class wbr 5074  dom cdm 5589  cres 5591   Fn wfn 6428  cfv 6433   predc-bnj14 32667   FrSe w-bnj15 32671   trClc-bnj18 32673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-bnj17 32666  df-bnj14 32668  df-bnj13 32670  df-bnj15 32672  df-bnj18 32674  df-bnj19 32676
This theorem is referenced by:  bnj1312  33038
  Copyright terms: Public domain W3C validator