Proof of Theorem bnj1452
Step | Hyp | Ref
| Expression |
1 | | bnj1452.14 |
. . 3
⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
2 | | bnj1452.5 |
. . . . . 6
⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
3 | | bnj1452.7 |
. . . . . 6
⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
4 | 2, 3 | bnj1212 32299 |
. . . . 5
⊢ (𝜒 → 𝑥 ∈ 𝐴) |
5 | 4 | snssd 4699 |
. . . 4
⊢ (𝜒 → {𝑥} ⊆ 𝐴) |
6 | | bnj1147 32494 |
. . . . 5
⊢
trCl(𝑥, 𝐴, 𝑅) ⊆ 𝐴 |
7 | 6 | a1i 11 |
. . . 4
⊢ (𝜒 → trCl(𝑥, 𝐴, 𝑅) ⊆ 𝐴) |
8 | 5, 7 | unssd 4091 |
. . 3
⊢ (𝜒 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ⊆ 𝐴) |
9 | 1, 8 | eqsstrid 3940 |
. 2
⊢ (𝜒 → 𝐸 ⊆ 𝐴) |
10 | | elsni 4539 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑥} → 𝑧 = 𝑥) |
11 | 10 | adantl 485 |
. . . . . . 7
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → 𝑧 = 𝑥) |
12 | | bnj602 32415 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅)) |
13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅)) |
14 | | bnj1452.6 |
. . . . . . . . . 10
⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
15 | 14 | simplbi 501 |
. . . . . . . . 9
⊢ (𝜓 → 𝑅 FrSe 𝐴) |
16 | 3, 15 | bnj835 32258 |
. . . . . . . 8
⊢ (𝜒 → 𝑅 FrSe 𝐴) |
17 | | bnj906 32430 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
18 | 16, 4, 17 | syl2anc 587 |
. . . . . . 7
⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
19 | 18 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
20 | 13, 19 | eqsstrd 3930 |
. . . . 5
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
21 | | ssun4 4080 |
. . . . . 6
⊢ (
pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅) → pred(𝑧, 𝐴, 𝑅) ⊆ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
22 | 21, 1 | sseqtrrdi 3943 |
. . . . 5
⊢ (
pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸) |
23 | 20, 22 | syl 17 |
. . . 4
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸) |
24 | 16 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴) |
25 | | simpr 488 |
. . . . . . . 8
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) |
26 | 6, 25 | bnj1213 32298 |
. . . . . . 7
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑧 ∈ 𝐴) |
27 | | bnj906 32430 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑧 ∈ 𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅)) |
28 | 24, 26, 27 | syl2anc 587 |
. . . . . 6
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅)) |
29 | 4 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑥 ∈ 𝐴) |
30 | | bnj1125 32492 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
31 | 24, 29, 25, 30 | syl3anc 1368 |
. . . . . 6
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
32 | 28, 31 | sstrd 3902 |
. . . . 5
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
33 | 32, 22 | syl 17 |
. . . 4
⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸) |
34 | 1 | bnj1424 32338 |
. . . . 5
⊢ (𝑧 ∈ 𝐸 → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) |
35 | 34 | adantl 485 |
. . . 4
⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) |
36 | 23, 33, 35 | mpjaodan 956 |
. . 3
⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸) |
37 | 36 | ralrimiva 3113 |
. 2
⊢ (𝜒 → ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸) |
38 | | snex 5300 |
. . . . . . . 8
⊢ {𝑥} ∈ V |
39 | 38 | a1i 11 |
. . . . . . 7
⊢ (𝜒 → {𝑥} ∈ V) |
40 | | bnj893 32428 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → trCl(𝑥, 𝐴, 𝑅) ∈ V) |
41 | 16, 4, 40 | syl2anc 587 |
. . . . . . 7
⊢ (𝜒 → trCl(𝑥, 𝐴, 𝑅) ∈ V) |
42 | 39, 41 | bnj1149 32292 |
. . . . . 6
⊢ (𝜒 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ∈ V) |
43 | 1, 42 | eqeltrid 2856 |
. . . . 5
⊢ (𝜒 → 𝐸 ∈ V) |
44 | | bnj1452.1 |
. . . . . 6
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
45 | 44 | bnj1454 32342 |
. . . . 5
⊢ (𝐸 ∈ V → (𝐸 ∈ 𝐵 ↔ [𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))) |
46 | 43, 45 | syl 17 |
. . . 4
⊢ (𝜒 → (𝐸 ∈ 𝐵 ↔ [𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))) |
47 | | bnj602 32415 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅)) |
48 | 47 | sseq1d 3923 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ( pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)) |
49 | 48 | cbvralvw 3361 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) |
50 | 49 | anbi2i 625 |
. . . . 5
⊢ ((𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)) |
51 | 50 | sbcbii 3753 |
. . . 4
⊢
([𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) ↔ [𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)) |
52 | 46, 51 | bitrdi 290 |
. . 3
⊢ (𝜒 → (𝐸 ∈ 𝐵 ↔ [𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))) |
53 | | sseq1 3917 |
. . . . . 6
⊢ (𝑑 = 𝐸 → (𝑑 ⊆ 𝐴 ↔ 𝐸 ⊆ 𝐴)) |
54 | | sseq2 3918 |
. . . . . . 7
⊢ (𝑑 = 𝐸 → ( pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)) |
55 | 54 | raleqbi1dv 3321 |
. . . . . 6
⊢ (𝑑 = 𝐸 → (∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)) |
56 | 53, 55 | anbi12d 633 |
. . . . 5
⊢ (𝑑 = 𝐸 → ((𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))) |
57 | 56 | sbcieg 3735 |
. . . 4
⊢ (𝐸 ∈ V → ([𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))) |
58 | 43, 57 | syl 17 |
. . 3
⊢ (𝜒 → ([𝐸 / 𝑑](𝑑 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))) |
59 | 52, 58 | bitrd 282 |
. 2
⊢ (𝜒 → (𝐸 ∈ 𝐵 ↔ (𝐸 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))) |
60 | 9, 37, 59 | mpbir2and 712 |
1
⊢ (𝜒 → 𝐸 ∈ 𝐵) |