Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1452 Structured version   Visualization version   GIF version

Theorem bnj1452 34051
Description: Technical lemma for bnj60 34061. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1452.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1452.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1452.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1452.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1452.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1452.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1452.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1452.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1452.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1452.10 𝑃 = 𝐻
bnj1452.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1452.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1452.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1452.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1452 (𝜒𝐸𝐵)
Distinct variable groups:   𝐴,𝑑,𝑥,𝑧   𝐸,𝑑,𝑧   𝑅,𝑑,𝑥,𝑧   𝜒,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑦,𝑓)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑅(𝑦,𝑓)   𝐸(𝑥,𝑦,𝑓)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1452
StepHypRef Expression
1 bnj1452.14 . . 3 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
2 bnj1452.5 . . . . . 6 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
3 bnj1452.7 . . . . . 6 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
42, 3bnj1212 33798 . . . . 5 (𝜒𝑥𝐴)
54snssd 4811 . . . 4 (𝜒 → {𝑥} ⊆ 𝐴)
6 bnj1147 33993 . . . . 5 trCl(𝑥, 𝐴, 𝑅) ⊆ 𝐴
76a1i 11 . . . 4 (𝜒 → trCl(𝑥, 𝐴, 𝑅) ⊆ 𝐴)
85, 7unssd 4185 . . 3 (𝜒 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ⊆ 𝐴)
91, 8eqsstrid 4029 . 2 (𝜒𝐸𝐴)
10 elsni 4644 . . . . . . . 8 (𝑧 ∈ {𝑥} → 𝑧 = 𝑥)
1110adantl 482 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → 𝑧 = 𝑥)
12 bnj602 33914 . . . . . . 7 (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅))
1311, 12syl 17 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅))
14 bnj1452.6 . . . . . . . . . 10 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
1514simplbi 498 . . . . . . . . 9 (𝜓𝑅 FrSe 𝐴)
163, 15bnj835 33758 . . . . . . . 8 (𝜒𝑅 FrSe 𝐴)
17 bnj906 33929 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
1816, 4, 17syl2anc 584 . . . . . . 7 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
1918ad2antrr 724 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
2013, 19eqsstrd 4019 . . . . 5 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
21 ssun4 4174 . . . . . 6 ( pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅) → pred(𝑧, 𝐴, 𝑅) ⊆ ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
2221, 1sseqtrrdi 4032 . . . . 5 ( pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
2320, 22syl 17 . . . 4 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
2416ad2antrr 724 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
25 simpr 485 . . . . . . . 8 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))
266, 25bnj1213 33797 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑧𝐴)
27 bnj906 33929 . . . . . . 7 ((𝑅 FrSe 𝐴𝑧𝐴) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
2824, 26, 27syl2anc 584 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑧, 𝐴, 𝑅))
294ad2antrr 724 . . . . . . 7 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → 𝑥𝐴)
30 bnj1125 33991 . . . . . . 7 ((𝑅 FrSe 𝐴𝑥𝐴𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3124, 29, 25, 30syl3anc 1371 . . . . . 6 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → trCl(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3228, 31sstrd 3991 . . . . 5 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3332, 22syl 17 . . . 4 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
341bnj1424 33837 . . . . 5 (𝑧𝐸 → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
3534adantl 482 . . . 4 ((𝜒𝑧𝐸) → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
3623, 33, 35mpjaodan 957 . . 3 ((𝜒𝑧𝐸) → pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
3736ralrimiva 3146 . 2 (𝜒 → ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)
38 vsnex 5428 . . . . . . . 8 {𝑥} ∈ V
3938a1i 11 . . . . . . 7 (𝜒 → {𝑥} ∈ V)
40 bnj893 33927 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑥𝐴) → trCl(𝑥, 𝐴, 𝑅) ∈ V)
4116, 4, 40syl2anc 584 . . . . . . 7 (𝜒 → trCl(𝑥, 𝐴, 𝑅) ∈ V)
4239, 41bnj1149 33791 . . . . . 6 (𝜒 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ∈ V)
431, 42eqeltrid 2837 . . . . 5 (𝜒𝐸 ∈ V)
44 bnj1452.1 . . . . . 6 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
4544bnj1454 33841 . . . . 5 (𝐸 ∈ V → (𝐸𝐵[𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)))
4643, 45syl 17 . . . 4 (𝜒 → (𝐸𝐵[𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)))
47 bnj602 33914 . . . . . . . 8 (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅))
4847sseq1d 4012 . . . . . . 7 (𝑥 = 𝑧 → ( pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))
4948cbvralvw 3234 . . . . . 6 (∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)
5049anbi2i 623 . . . . 5 ((𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))
5150sbcbii 3836 . . . 4 ([𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) ↔ [𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))
5246, 51bitrdi 286 . . 3 (𝜒 → (𝐸𝐵[𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)))
53 sseq1 4006 . . . . . 6 (𝑑 = 𝐸 → (𝑑𝐴𝐸𝐴))
54 sseq2 4007 . . . . . . 7 (𝑑 = 𝐸 → ( pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))
5554raleqbi1dv 3333 . . . . . 6 (𝑑 = 𝐸 → (∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸))
5653, 55anbi12d 631 . . . . 5 (𝑑 = 𝐸 → ((𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
5756sbcieg 3816 . . . 4 (𝐸 ∈ V → ([𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
5843, 57syl 17 . . 3 (𝜒 → ([𝐸 / 𝑑](𝑑𝐴 ∧ ∀𝑧𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
5952, 58bitrd 278 . 2 (𝜒 → (𝐸𝐵 ↔ (𝐸𝐴 ∧ ∀𝑧𝐸 pred(𝑧, 𝐴, 𝑅) ⊆ 𝐸)))
609, 37, 59mpbir2and 711 1 (𝜒𝐸𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wne 2940  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  [wsbc 3776  cun 3945  wss 3947  c0 4321  {csn 4627  cop 4633   cuni 4907   class class class wbr 5147  dom cdm 5675  cres 5677   Fn wfn 6535  cfv 6540   predc-bnj14 33687   FrSe w-bnj15 33691   trClc-bnj18 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-reg 9583  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-bnj17 33686  df-bnj14 33688  df-bnj13 33690  df-bnj15 33692  df-bnj18 33694  df-bnj19 33696
This theorem is referenced by:  bnj1312  34057
  Copyright terms: Public domain W3C validator