Step | Hyp | Ref
| Expression |
1 | | bnj1463.18 |
. . . . . . 7
⊢ (𝜒 → 𝐸 ∈ 𝐵) |
2 | 1 | elexd 3442 |
. . . . . 6
⊢ (𝜒 → 𝐸 ∈ V) |
3 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑑 = 𝐸 → (𝑑 ∈ 𝐵 ↔ 𝐸 ∈ 𝐵)) |
4 | | fneq2 6509 |
. . . . . . . . 9
⊢ (𝑑 = 𝐸 → (𝑄 Fn 𝑑 ↔ 𝑄 Fn 𝐸)) |
5 | | raleq 3333 |
. . . . . . . . 9
⊢ (𝑑 = 𝐸 → (∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊) ↔ ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊))) |
6 | 4, 5 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑑 = 𝐸 → ((𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)) ↔ (𝑄 Fn 𝐸 ∧ ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)))) |
7 | 3, 6 | anbi12d 630 |
. . . . . . 7
⊢ (𝑑 = 𝐸 → ((𝑑 ∈ 𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊))) ↔ (𝐸 ∈ 𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊))))) |
8 | | bnj1463.1 |
. . . . . . . . . . . 12
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
9 | 8 | bnj1317 32701 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝐵 → ∀𝑑 𝑤 ∈ 𝐵) |
10 | 9 | nfcii 2890 |
. . . . . . . . . 10
⊢
Ⅎ𝑑𝐵 |
11 | 10 | nfel2 2924 |
. . . . . . . . 9
⊢
Ⅎ𝑑 𝐸 ∈ 𝐵 |
12 | | bnj1463.2 |
. . . . . . . . . . . . 13
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
13 | | bnj1463.3 |
. . . . . . . . . . . . 13
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
14 | | bnj1463.4 |
. . . . . . . . . . . . 13
⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
15 | | bnj1463.5 |
. . . . . . . . . . . . 13
⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
16 | | bnj1463.6 |
. . . . . . . . . . . . 13
⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
17 | | bnj1463.7 |
. . . . . . . . . . . . 13
⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
18 | | bnj1463.8 |
. . . . . . . . . . . . 13
⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
19 | | bnj1463.9 |
. . . . . . . . . . . . 13
⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
20 | | bnj1463.10 |
. . . . . . . . . . . . 13
⊢ 𝑃 = ∪
𝐻 |
21 | | bnj1463.11 |
. . . . . . . . . . . . 13
⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
22 | | bnj1463.12 |
. . . . . . . . . . . . 13
⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
23 | 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 | bnj1467 32934 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝑄 → ∀𝑑 𝑤 ∈ 𝑄) |
24 | 23 | nfcii 2890 |
. . . . . . . . . . 11
⊢
Ⅎ𝑑𝑄 |
25 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑑𝐸 |
26 | 24, 25 | nffn 6516 |
. . . . . . . . . 10
⊢
Ⅎ𝑑 𝑄 Fn 𝐸 |
27 | | bnj1463.13 |
. . . . . . . . . . . . 13
⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
28 | 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 27 | bnj1446 32925 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑑(𝑄‘𝑧) = (𝐺‘𝑊)) |
29 | 28 | nf5i 2144 |
. . . . . . . . . . 11
⊢
Ⅎ𝑑(𝑄‘𝑧) = (𝐺‘𝑊) |
30 | 25, 29 | nfralw 3149 |
. . . . . . . . . 10
⊢
Ⅎ𝑑∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊) |
31 | 26, 30 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑑(𝑄 Fn 𝐸 ∧ ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)) |
32 | 11, 31 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑑(𝐸 ∈ 𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊))) |
33 | 32 | nf5ri 2191 |
. . . . . . 7
⊢ ((𝐸 ∈ 𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊))) → ∀𝑑(𝐸 ∈ 𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)))) |
34 | | bnj1463.17 |
. . . . . . . 8
⊢ (𝜒 → 𝑄 Fn 𝐸) |
35 | | bnj1463.16 |
. . . . . . . 8
⊢ (𝜒 → ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)) |
36 | 1, 34, 35 | jca32 515 |
. . . . . . 7
⊢ (𝜒 → (𝐸 ∈ 𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)))) |
37 | 7, 33, 36 | bnj1465 32725 |
. . . . . 6
⊢ ((𝜒 ∧ 𝐸 ∈ V) → ∃𝑑(𝑑 ∈ 𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)))) |
38 | 2, 37 | mpdan 683 |
. . . . 5
⊢ (𝜒 → ∃𝑑(𝑑 ∈ 𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)))) |
39 | | df-rex 3069 |
. . . . 5
⊢
(∃𝑑 ∈
𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)) ↔ ∃𝑑(𝑑 ∈ 𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)))) |
40 | 38, 39 | sylibr 233 |
. . . 4
⊢ (𝜒 → ∃𝑑 ∈ 𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊))) |
41 | | bnj1463.15 |
. . . . 5
⊢ (𝜒 → 𝑄 ∈ V) |
42 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑓𝐵 |
43 | 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 | bnj1466 32933 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑄 → ∀𝑓 𝑤 ∈ 𝑄) |
44 | 43 | nfcii 2890 |
. . . . . . . . . 10
⊢
Ⅎ𝑓𝑄 |
45 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑓𝑑 |
46 | 44, 45 | nffn 6516 |
. . . . . . . . 9
⊢
Ⅎ𝑓 𝑄 Fn 𝑑 |
47 | 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 27 | bnj1448 32927 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑓(𝑄‘𝑧) = (𝐺‘𝑊)) |
48 | 47 | nf5i 2144 |
. . . . . . . . . 10
⊢
Ⅎ𝑓(𝑄‘𝑧) = (𝐺‘𝑊) |
49 | 45, 48 | nfralw 3149 |
. . . . . . . . 9
⊢
Ⅎ𝑓∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊) |
50 | 46, 49 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑓(𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)) |
51 | 42, 50 | nfrex 3237 |
. . . . . . 7
⊢
Ⅎ𝑓∃𝑑 ∈ 𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)) |
52 | 51 | nf5ri 2191 |
. . . . . 6
⊢
(∃𝑑 ∈
𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)) → ∀𝑓∃𝑑 ∈ 𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊))) |
53 | 24 | nfeq2 2923 |
. . . . . . 7
⊢
Ⅎ𝑑 𝑓 = 𝑄 |
54 | | fneq1 6508 |
. . . . . . . 8
⊢ (𝑓 = 𝑄 → (𝑓 Fn 𝑑 ↔ 𝑄 Fn 𝑑)) |
55 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑄 → (𝑓‘𝑧) = (𝑄‘𝑧)) |
56 | | reseq1 5874 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑄 → (𝑓 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))) |
57 | 56 | opeq2d 4808 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑄 → 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉) |
58 | 57, 27 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑄 → 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 = 𝑊) |
59 | 58 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑄 → (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉) = (𝐺‘𝑊)) |
60 | 55, 59 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑓 = 𝑄 → ((𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉) ↔ (𝑄‘𝑧) = (𝐺‘𝑊))) |
61 | 60 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑓 = 𝑄 → (∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉) ↔ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊))) |
62 | 54, 61 | anbi12d 630 |
. . . . . . 7
⊢ (𝑓 = 𝑄 → ((𝑓 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉)) ↔ (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)))) |
63 | 53, 62 | rexbid 3248 |
. . . . . 6
⊢ (𝑓 = 𝑄 → (∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉)) ↔ ∃𝑑 ∈ 𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)))) |
64 | 52, 63, 43 | bnj1468 32726 |
. . . . 5
⊢ (𝑄 ∈ V → ([𝑄 / 𝑓]∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉)) ↔ ∃𝑑 ∈ 𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)))) |
65 | 41, 64 | syl 17 |
. . . 4
⊢ (𝜒 → ([𝑄 / 𝑓]∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉)) ↔ ∃𝑑 ∈ 𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑄‘𝑧) = (𝐺‘𝑊)))) |
66 | 40, 65 | mpbird 256 |
. . 3
⊢ (𝜒 → [𝑄 / 𝑓]∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉))) |
67 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑓‘𝑥) = (𝑓‘𝑧)) |
68 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
69 | | bnj602 32795 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅)) |
70 | 69 | reseq2d 5880 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))) |
71 | 68, 70 | opeq12d 4809 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉) |
72 | 12, 71 | syl5eq 2791 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝑌 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉) |
73 | 72 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝐺‘𝑌) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉)) |
74 | 67, 73 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑓‘𝑥) = (𝐺‘𝑌) ↔ (𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉))) |
75 | 74 | cbvralvw 3372 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑑 (𝑓‘𝑥) = (𝐺‘𝑌) ↔ ∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉)) |
76 | 75 | anbi2i 622 |
. . . . 5
⊢ ((𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (𝑓 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉))) |
77 | 76 | rexbii 3177 |
. . . 4
⊢
(∃𝑑 ∈
𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉))) |
78 | 77 | sbcbii 3772 |
. . 3
⊢
([𝑄 / 𝑓]∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ [𝑄 / 𝑓]∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉))) |
79 | 66, 78 | sylibr 233 |
. 2
⊢ (𝜒 → [𝑄 / 𝑓]∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
80 | 13 | bnj1454 32722 |
. . 3
⊢ (𝑄 ∈ V → (𝑄 ∈ 𝐶 ↔ [𝑄 / 𝑓]∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) |
81 | 41, 80 | syl 17 |
. 2
⊢ (𝜒 → (𝑄 ∈ 𝐶 ↔ [𝑄 / 𝑓]∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) |
82 | 79, 81 | mpbird 256 |
1
⊢ (𝜒 → 𝑄 ∈ 𝐶) |