Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1463 Structured version   Visualization version   GIF version

Theorem bnj1463 31978
Description: Technical lemma for bnj60 31985. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1463.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1463.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1463.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1463.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1463.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1463.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1463.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1463.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1463.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1463.10 𝑃 = 𝐻
bnj1463.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1463.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1463.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1463.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
bnj1463.15 (𝜒𝑄 ∈ V)
bnj1463.16 (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
bnj1463.17 (𝜒𝑄 Fn 𝐸)
bnj1463.18 (𝜒𝐸𝐵)
Assertion
Ref Expression
bnj1463 (𝜒𝑄𝐶)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐸,𝑑,𝑧   𝐺,𝑑,𝑓,𝑥,𝑧   𝑧,𝑄   𝑅,𝑑,𝑓,𝑥   𝑧,𝑌   𝑦,𝑑,𝑥
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑦,𝑧)   𝐸(𝑥,𝑦,𝑓)   𝐺(𝑦)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1463
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1463.18 . . . . . . 7 (𝜒𝐸𝐵)
21elexd 3435 . . . . . 6 (𝜒𝐸 ∈ V)
3 eleq1 2853 . . . . . . . 8 (𝑑 = 𝐸 → (𝑑𝐵𝐸𝐵))
4 fneq2 6278 . . . . . . . . 9 (𝑑 = 𝐸 → (𝑄 Fn 𝑑𝑄 Fn 𝐸))
5 raleq 3345 . . . . . . . . 9 (𝑑 = 𝐸 → (∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊) ↔ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊)))
64, 5anbi12d 621 . . . . . . . 8 (𝑑 = 𝐸 → ((𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)) ↔ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))))
73, 6anbi12d 621 . . . . . . 7 (𝑑 = 𝐸 → ((𝑑𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))) ↔ (𝐸𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊)))))
8 bnj1463.1 . . . . . . . . . . . 12 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
98bnj1317 31747 . . . . . . . . . . 11 (𝑤𝐵 → ∀𝑑 𝑤𝐵)
109nfcii 2920 . . . . . . . . . 10 𝑑𝐵
1110nfel2 2948 . . . . . . . . 9 𝑑 𝐸𝐵
12 bnj1463.2 . . . . . . . . . . . . 13 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
13 bnj1463.3 . . . . . . . . . . . . 13 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
14 bnj1463.4 . . . . . . . . . . . . 13 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
15 bnj1463.5 . . . . . . . . . . . . 13 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
16 bnj1463.6 . . . . . . . . . . . . 13 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
17 bnj1463.7 . . . . . . . . . . . . 13 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
18 bnj1463.8 . . . . . . . . . . . . 13 (𝜏′[𝑦 / 𝑥]𝜏)
19 bnj1463.9 . . . . . . . . . . . . 13 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
20 bnj1463.10 . . . . . . . . . . . . 13 𝑃 = 𝐻
21 bnj1463.11 . . . . . . . . . . . . 13 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
22 bnj1463.12 . . . . . . . . . . . . 13 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
238, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22bnj1467 31977 . . . . . . . . . . . 12 (𝑤𝑄 → ∀𝑑 𝑤𝑄)
2423nfcii 2920 . . . . . . . . . . 11 𝑑𝑄
25 nfcv 2932 . . . . . . . . . . 11 𝑑𝐸
2624, 25nffn 6285 . . . . . . . . . 10 𝑑 𝑄 Fn 𝐸
27 bnj1463.13 . . . . . . . . . . . . 13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
288, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 27bnj1446 31968 . . . . . . . . . . . 12 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑑(𝑄𝑧) = (𝐺𝑊))
2928nf5i 2084 . . . . . . . . . . 11 𝑑(𝑄𝑧) = (𝐺𝑊)
3025, 29nfral 3174 . . . . . . . . . 10 𝑑𝑧𝐸 (𝑄𝑧) = (𝐺𝑊)
3126, 30nfan 1862 . . . . . . . . 9 𝑑(𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
3211, 31nfan 1862 . . . . . . . 8 𝑑(𝐸𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊)))
3332nf5ri 2123 . . . . . . 7 ((𝐸𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))) → ∀𝑑(𝐸𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))))
34 bnj1463.17 . . . . . . . 8 (𝜒𝑄 Fn 𝐸)
35 bnj1463.16 . . . . . . . 8 (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
361, 34, 35jca32 508 . . . . . . 7 (𝜒 → (𝐸𝐵 ∧ (𝑄 Fn 𝐸 ∧ ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))))
377, 33, 36bnj1465 31770 . . . . . 6 ((𝜒𝐸 ∈ V) → ∃𝑑(𝑑𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
382, 37mpdan 674 . . . . 5 (𝜒 → ∃𝑑(𝑑𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
39 df-rex 3094 . . . . 5 (∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)) ↔ ∃𝑑(𝑑𝐵 ∧ (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
4038, 39sylibr 226 . . . 4 (𝜒 → ∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)))
41 bnj1463.15 . . . . 5 (𝜒𝑄 ∈ V)
42 nfcv 2932 . . . . . . . 8 𝑓𝐵
438, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22bnj1466 31976 . . . . . . . . . . 11 (𝑤𝑄 → ∀𝑓 𝑤𝑄)
4443nfcii 2920 . . . . . . . . . 10 𝑓𝑄
45 nfcv 2932 . . . . . . . . . 10 𝑓𝑑
4644, 45nffn 6285 . . . . . . . . 9 𝑓 𝑄 Fn 𝑑
478, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 27bnj1448 31970 . . . . . . . . . . 11 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑓(𝑄𝑧) = (𝐺𝑊))
4847nf5i 2084 . . . . . . . . . 10 𝑓(𝑄𝑧) = (𝐺𝑊)
4945, 48nfral 3174 . . . . . . . . 9 𝑓𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)
5046, 49nfan 1862 . . . . . . . 8 𝑓(𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))
5142, 50nfrex 3253 . . . . . . 7 𝑓𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))
5251nf5ri 2123 . . . . . 6 (∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)) → ∀𝑓𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)))
5324nfeq2 2947 . . . . . . 7 𝑑 𝑓 = 𝑄
54 fneq1 6277 . . . . . . . 8 (𝑓 = 𝑄 → (𝑓 Fn 𝑑𝑄 Fn 𝑑))
55 fveq1 6498 . . . . . . . . . 10 (𝑓 = 𝑄 → (𝑓𝑧) = (𝑄𝑧))
56 reseq1 5689 . . . . . . . . . . . . 13 (𝑓 = 𝑄 → (𝑓 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)))
5756opeq2d 4684 . . . . . . . . . . . 12 (𝑓 = 𝑄 → ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩)
5857, 27syl6eqr 2832 . . . . . . . . . . 11 (𝑓 = 𝑄 → ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = 𝑊)
5958fveq2d 6503 . . . . . . . . . 10 (𝑓 = 𝑄 → (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩) = (𝐺𝑊))
6055, 59eqeq12d 2793 . . . . . . . . 9 (𝑓 = 𝑄 → ((𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩) ↔ (𝑄𝑧) = (𝐺𝑊)))
6160ralbidv 3147 . . . . . . . 8 (𝑓 = 𝑄 → (∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩) ↔ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊)))
6254, 61anbi12d 621 . . . . . . 7 (𝑓 = 𝑄 → ((𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)) ↔ (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
6353, 62rexbid 3263 . . . . . 6 (𝑓 = 𝑄 → (∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)) ↔ ∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
6452, 63, 43bnj1468 31771 . . . . 5 (𝑄 ∈ V → ([𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)) ↔ ∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
6541, 64syl 17 . . . 4 (𝜒 → ([𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)) ↔ ∃𝑑𝐵 (𝑄 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑄𝑧) = (𝐺𝑊))))
6640, 65mpbird 249 . . 3 (𝜒[𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)))
67 fveq2 6499 . . . . . . . 8 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
68 id 22 . . . . . . . . . . 11 (𝑥 = 𝑧𝑥 = 𝑧)
69 bnj602 31840 . . . . . . . . . . . 12 (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅))
7069reseq2d 5695 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑧, 𝐴, 𝑅)))
7168, 70opeq12d 4685 . . . . . . . . . 10 (𝑥 = 𝑧 → ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)
7212, 71syl5eq 2826 . . . . . . . . 9 (𝑥 = 𝑧𝑌 = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)
7372fveq2d 6503 . . . . . . . 8 (𝑥 = 𝑧 → (𝐺𝑌) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩))
7467, 73eqeq12d 2793 . . . . . . 7 (𝑥 = 𝑧 → ((𝑓𝑥) = (𝐺𝑌) ↔ (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)))
7574cbvralv 3383 . . . . . 6 (∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌) ↔ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩))
7675anbi2i 613 . . . . 5 ((𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)))
7776rexbii 3194 . . . 4 (∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)))
7877sbcbii 3732 . . 3 ([𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ [𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑧𝑑 (𝑓𝑧) = (𝐺‘⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)))
7966, 78sylibr 226 . 2 (𝜒[𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
8013bnj1454 31767 . . 3 (𝑄 ∈ V → (𝑄𝐶[𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
8141, 80syl 17 . 2 (𝜒 → (𝑄𝐶[𝑄 / 𝑓]𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
8279, 81mpbird 249 1 (𝜒𝑄𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wex 1742  wcel 2050  {cab 2758  wne 2967  wral 3088  wrex 3089  {crab 3092  Vcvv 3415  [wsbc 3681  cun 3827  wss 3829  c0 4178  {csn 4441  cop 4447   cuni 4712   class class class wbr 4929  dom cdm 5407  cres 5409   Fn wfn 6183  cfv 6188   predc-bnj14 31612   FrSe w-bnj15 31616   trClc-bnj18 31618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-res 5419  df-iota 6152  df-fun 6190  df-fn 6191  df-fv 6196  df-bnj14 31613
This theorem is referenced by:  bnj1312  31981
  Copyright terms: Public domain W3C validator