Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1173 Structured version   Visualization version   GIF version

Theorem bnj1173 34992
Description: Technical lemma for bnj69 35000. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1173.3 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
bnj1173.5 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
bnj1173.9 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
bnj1173.17 ((𝜑𝜓) → 𝑋𝐴)
Assertion
Ref Expression
bnj1173 ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))

Proof of Theorem bnj1173
StepHypRef Expression
1 bnj1173.5 . . 3 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
2 3simpc 1150 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
3 bnj1173.9 . . . . . . 7 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
433adant3 1132 . . . . . 6 ((𝜑𝜓𝑧𝐶) → 𝑅 FrSe 𝐴)
5 bnj1173.17 . . . . . . 7 ((𝜑𝜓) → 𝑋𝐴)
653adant3 1132 . . . . . 6 ((𝜑𝜓𝑧𝐶) → 𝑋𝐴)
7 elin 3930 . . . . . . . . 9 (𝑧 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ↔ (𝑧 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧𝐵))
87simplbi 497 . . . . . . . 8 (𝑧 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) → 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))
9 bnj1173.3 . . . . . . . 8 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
108, 9eleq2s 2846 . . . . . . 7 (𝑧𝐶𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))
11103ad2ant3 1135 . . . . . 6 ((𝜑𝜓𝑧𝐶) → 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))
12 pm3.21 471 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ (𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)))))
134, 6, 11, 12syl3anc 1373 . . . . 5 ((𝜑𝜓𝑧𝐶) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ (𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)))))
14 bnj170 34688 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ↔ (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ (𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))))
1513, 14imbitrrdi 252 . . . 4 ((𝜑𝜓𝑧𝐶) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
162, 15impbid2 226 . . 3 ((𝜑𝜓𝑧𝐶) → (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ↔ ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
171, 16bitrid 283 . 2 ((𝜑𝜓𝑧𝐶) → (𝜃 ↔ ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
18 bnj1147 34984 . . . . 5 trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
1918, 11bnj1213 34788 . . . 4 ((𝜑𝜓𝑧𝐶) → 𝑧𝐴)
204, 19jca 511 . . 3 ((𝜑𝜓𝑧𝐶) → (𝑅 FrSe 𝐴𝑧𝐴))
2120biantrurd 532 . 2 ((𝜑𝜓𝑧𝐶) → (𝑤𝐴 ↔ ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
2217, 21bitr4d 282 1 ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3913   FrSe w-bnj15 34682   trClc-bnj18 34684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fn 6514  df-fv 6519  df-om 7843  df-bnj17 34677  df-bnj14 34679  df-bnj18 34685
This theorem is referenced by:  bnj1190  34998
  Copyright terms: Public domain W3C validator