Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1173 Structured version   Visualization version   GIF version

Theorem bnj1173 32982
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1173.3 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
bnj1173.5 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
bnj1173.9 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
bnj1173.17 ((𝜑𝜓) → 𝑋𝐴)
Assertion
Ref Expression
bnj1173 ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))

Proof of Theorem bnj1173
StepHypRef Expression
1 bnj1173.5 . . 3 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
2 3simpc 1149 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
3 bnj1173.9 . . . . . . 7 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
433adant3 1131 . . . . . 6 ((𝜑𝜓𝑧𝐶) → 𝑅 FrSe 𝐴)
5 bnj1173.17 . . . . . . 7 ((𝜑𝜓) → 𝑋𝐴)
653adant3 1131 . . . . . 6 ((𝜑𝜓𝑧𝐶) → 𝑋𝐴)
7 elin 3903 . . . . . . . . 9 (𝑧 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ↔ (𝑧 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧𝐵))
87simplbi 498 . . . . . . . 8 (𝑧 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) → 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))
9 bnj1173.3 . . . . . . . 8 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
108, 9eleq2s 2857 . . . . . . 7 (𝑧𝐶𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))
11103ad2ant3 1134 . . . . . 6 ((𝜑𝜓𝑧𝐶) → 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))
12 pm3.21 472 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ (𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)))))
134, 6, 11, 12syl3anc 1370 . . . . 5 ((𝜑𝜓𝑧𝐶) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ (𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)))))
14 bnj170 32677 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ↔ (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ (𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))))
1513, 14syl6ibr 251 . . . 4 ((𝜑𝜓𝑧𝐶) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
162, 15impbid2 225 . . 3 ((𝜑𝜓𝑧𝐶) → (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ↔ ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
171, 16syl5bb 283 . 2 ((𝜑𝜓𝑧𝐶) → (𝜃 ↔ ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
18 bnj1147 32974 . . . . 5 trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
1918, 11bnj1213 32778 . . . 4 ((𝜑𝜓𝑧𝐶) → 𝑧𝐴)
204, 19jca 512 . . 3 ((𝜑𝜓𝑧𝐶) → (𝑅 FrSe 𝐴𝑧𝐴))
2120biantrurd 533 . 2 ((𝜑𝜓𝑧𝐶) → (𝑤𝐴 ↔ ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
2217, 21bitr4d 281 1 ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886   FrSe w-bnj15 32671   trClc-bnj18 32673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fn 6436  df-fv 6441  df-om 7713  df-bnj17 32666  df-bnj14 32668  df-bnj18 32674
This theorem is referenced by:  bnj1190  32988
  Copyright terms: Public domain W3C validator