Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1173 Structured version   Visualization version   GIF version

Theorem bnj1173 33222
Description: Technical lemma for bnj69 33230. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1173.3 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
bnj1173.5 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
bnj1173.9 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
bnj1173.17 ((𝜑𝜓) → 𝑋𝐴)
Assertion
Ref Expression
bnj1173 ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))

Proof of Theorem bnj1173
StepHypRef Expression
1 bnj1173.5 . . 3 (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
2 3simpc 1149 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))
3 bnj1173.9 . . . . . . 7 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
433adant3 1131 . . . . . 6 ((𝜑𝜓𝑧𝐶) → 𝑅 FrSe 𝐴)
5 bnj1173.17 . . . . . . 7 ((𝜑𝜓) → 𝑋𝐴)
653adant3 1131 . . . . . 6 ((𝜑𝜓𝑧𝐶) → 𝑋𝐴)
7 elin 3913 . . . . . . . . 9 (𝑧 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) ↔ (𝑧 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧𝐵))
87simplbi 498 . . . . . . . 8 (𝑧 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) → 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))
9 bnj1173.3 . . . . . . . 8 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
108, 9eleq2s 2855 . . . . . . 7 (𝑧𝐶𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))
11103ad2ant3 1134 . . . . . 6 ((𝜑𝜓𝑧𝐶) → 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))
12 pm3.21 472 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ (𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)))))
134, 6, 11, 12syl3anc 1370 . . . . 5 ((𝜑𝜓𝑧𝐶) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ (𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)))))
14 bnj170 32918 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ↔ (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ∧ (𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))))
1513, 14syl6ibr 251 . . . 4 ((𝜑𝜓𝑧𝐶) → (((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) → ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
162, 15impbid2 225 . . 3 ((𝜑𝜓𝑧𝐶) → (((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴) ↔ ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
171, 16bitrid 282 . 2 ((𝜑𝜓𝑧𝐶) → (𝜃 ↔ ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
18 bnj1147 33214 . . . . 5 trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
1918, 11bnj1213 33018 . . . 4 ((𝜑𝜓𝑧𝐶) → 𝑧𝐴)
204, 19jca 512 . . 3 ((𝜑𝜓𝑧𝐶) → (𝑅 FrSe 𝐴𝑧𝐴))
2120biantrurd 533 . 2 ((𝜑𝜓𝑧𝐶) → (𝑤𝐴 ↔ ((𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴)))
2217, 21bitr4d 281 1 ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  cin 3896   FrSe w-bnj15 32912   trClc-bnj18 32914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-tr 5207  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fn 6476  df-fv 6481  df-om 7773  df-bnj17 32907  df-bnj14 32909  df-bnj18 32915
This theorem is referenced by:  bnj1190  33228
  Copyright terms: Public domain W3C validator