Proof of Theorem bnj607
Step | Hyp | Ref
| Expression |
1 | | bnj607.37 |
. . . . 5
⊢ ((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷) → ∃𝑚∃𝑝𝜂) |
2 | 1 | anim1i 614 |
. . . 4
⊢ (((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷) ∧ 𝜃) → (∃𝑚∃𝑝𝜂 ∧ 𝜃)) |
3 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑝𝜃 |
4 | 3 | 19.41 2231 |
. . . . . 6
⊢
(∃𝑝(𝜂 ∧ 𝜃) ↔ (∃𝑝𝜂 ∧ 𝜃)) |
5 | 4 | exbii 1851 |
. . . . 5
⊢
(∃𝑚∃𝑝(𝜂 ∧ 𝜃) ↔ ∃𝑚(∃𝑝𝜂 ∧ 𝜃)) |
6 | | bnj607.5 |
. . . . . . . 8
⊢ (𝜃 ↔ ∀𝑚 ∈ 𝐷 (𝑚 E 𝑛 → [𝑚 / 𝑛]𝜒)) |
7 | 6 | bnj1095 32661 |
. . . . . . 7
⊢ (𝜃 → ∀𝑚𝜃) |
8 | 7 | nf5i 2144 |
. . . . . 6
⊢
Ⅎ𝑚𝜃 |
9 | 8 | 19.41 2231 |
. . . . 5
⊢
(∃𝑚(∃𝑝𝜂 ∧ 𝜃) ↔ (∃𝑚∃𝑝𝜂 ∧ 𝜃)) |
10 | 5, 9 | bitr2i 275 |
. . . 4
⊢
((∃𝑚∃𝑝𝜂 ∧ 𝜃) ↔ ∃𝑚∃𝑝(𝜂 ∧ 𝜃)) |
11 | 2, 10 | sylib 217 |
. . 3
⊢ (((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷) ∧ 𝜃) → ∃𝑚∃𝑝(𝜂 ∧ 𝜃)) |
12 | | bnj607.19 |
. . . . . . . . . 10
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
13 | 12 | bnj1232 32683 |
. . . . . . . . 9
⊢ (𝜂 → 𝑚 ∈ 𝐷) |
14 | | bnj219 32612 |
. . . . . . . . . 10
⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) |
15 | 12, 14 | bnj770 32643 |
. . . . . . . . 9
⊢ (𝜂 → 𝑚 E 𝑛) |
16 | 13, 15 | jca 511 |
. . . . . . . 8
⊢ (𝜂 → (𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛)) |
17 | 16 | anim1i 614 |
. . . . . . 7
⊢ ((𝜂 ∧ 𝜃) → ((𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛) ∧ 𝜃)) |
18 | | bnj170 32577 |
. . . . . . 7
⊢ ((𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛) ↔ ((𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛) ∧ 𝜃)) |
19 | 17, 18 | sylibr 233 |
. . . . . 6
⊢ ((𝜂 ∧ 𝜃) → (𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛)) |
20 | | bnj607.38 |
. . . . . 6
⊢ ((𝜃 ∧ 𝑚 ∈ 𝐷 ∧ 𝑚 E 𝑛) → 𝜒′) |
21 | 19, 20 | syl 17 |
. . . . 5
⊢ ((𝜂 ∧ 𝜃) → 𝜒′) |
22 | | simpl 482 |
. . . . 5
⊢ ((𝜂 ∧ 𝜃) → 𝜂) |
23 | 21, 22 | jca 511 |
. . . 4
⊢ ((𝜂 ∧ 𝜃) → (𝜒′ ∧ 𝜂)) |
24 | 23 | 2eximi 1839 |
. . 3
⊢
(∃𝑚∃𝑝(𝜂 ∧ 𝜃) → ∃𝑚∃𝑝(𝜒′ ∧ 𝜂)) |
25 | | bnj607.31 |
. . . . . . . . . . . 12
⊢ (𝜒′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
26 | 25 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝜒′ → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
27 | | euex 2577 |
. . . . . . . . . . 11
⊢
(∃!𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
28 | 26, 27 | syl6 35 |
. . . . . . . . . 10
⊢ (𝜒′ → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
29 | 28 | impcom 407 |
. . . . . . . . 9
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) → ∃𝑓(𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
30 | | bnj607.17 |
. . . . . . . . 9
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
31 | 29, 30 | bnj1198 32675 |
. . . . . . . 8
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝜒′) → ∃𝑓𝜏) |
32 | 31 | adantrr 713 |
. . . . . . 7
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜒′ ∧ 𝜂)) → ∃𝑓𝜏) |
33 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂)) |
34 | 33 | 3com23 1124 |
. . . . . . . . . 10
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜂 ∧ 𝜏) → (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂)) |
35 | 34 | 3expia 1119 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜂) → (𝜏 → (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂))) |
36 | 35 | eximdv 1921 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜂) → (∃𝑓𝜏 → ∃𝑓(𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂))) |
37 | 36 | ad2ant2rl 745 |
. . . . . . 7
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜒′ ∧ 𝜂)) → (∃𝑓𝜏 → ∃𝑓(𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂))) |
38 | 32, 37 | mpd 15 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜒′ ∧ 𝜂)) → ∃𝑓(𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂)) |
39 | | bnj607.41 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝐺 Fn 𝑛) |
40 | | bnj607.42 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝜑″) |
41 | | bnj607.43 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → 𝜓″) |
42 | 39, 40, 41 | 3jca 1126 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → (𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″)) |
43 | 42 | eximi 1838 |
. . . . . 6
⊢
(∃𝑓(𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂) → ∃𝑓(𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″)) |
44 | | nfe1 2149 |
. . . . . . 7
⊢
Ⅎ𝑓∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) |
45 | | bnj607.28 |
. . . . . . . . 9
⊢ 𝐺 ∈ V |
46 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎℎ𝐺 |
47 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎℎ 𝐺 Fn 𝑛 |
48 | | bnj607.300 |
. . . . . . . . . . . 12
⊢ (𝜑1 ↔ [𝐺 / ℎ]𝜑0) |
49 | | nfsbc1v 3731 |
. . . . . . . . . . . 12
⊢
Ⅎℎ[𝐺 / ℎ]𝜑0 |
50 | 48, 49 | nfxfr 1856 |
. . . . . . . . . . 11
⊢
Ⅎℎ𝜑1 |
51 | | bnj607.301 |
. . . . . . . . . . . 12
⊢ (𝜓1 ↔ [𝐺 / ℎ]𝜓0) |
52 | | nfsbc1v 3731 |
. . . . . . . . . . . 12
⊢
Ⅎℎ[𝐺 / ℎ]𝜓0 |
53 | 51, 52 | nfxfr 1856 |
. . . . . . . . . . 11
⊢
Ⅎℎ𝜓1 |
54 | 47, 50, 53 | nf3an 1905 |
. . . . . . . . . 10
⊢
Ⅎℎ(𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1) |
55 | | fneq1 6508 |
. . . . . . . . . . 11
⊢ (ℎ = 𝐺 → (ℎ Fn 𝑛 ↔ 𝐺 Fn 𝑛)) |
56 | | sbceq1a 3722 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝐺 → (𝜑0 ↔ [𝐺 / ℎ]𝜑0)) |
57 | 56, 48 | bitr4di 288 |
. . . . . . . . . . 11
⊢ (ℎ = 𝐺 → (𝜑0 ↔ 𝜑1)) |
58 | | sbceq1a 3722 |
. . . . . . . . . . . 12
⊢ (ℎ = 𝐺 → (𝜓0 ↔ [𝐺 / ℎ]𝜓0)) |
59 | 58, 51 | bitr4di 288 |
. . . . . . . . . . 11
⊢ (ℎ = 𝐺 → (𝜓0 ↔ 𝜓1)) |
60 | 55, 57, 59 | 3anbi123d 1434 |
. . . . . . . . . 10
⊢ (ℎ = 𝐺 → ((ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0) ↔ (𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1))) |
61 | 46, 54, 60 | spcegf 3521 |
. . . . . . . . 9
⊢ (𝐺 ∈ V → ((𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1) → ∃ℎ(ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0))) |
62 | 45, 61 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1) → ∃ℎ(ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0)) |
63 | | bnj607.32 |
. . . . . . . . . . . 12
⊢ (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅)) |
64 | | bnj607.400 |
. . . . . . . . . . . . . 14
⊢ (𝜑0 ↔ [ℎ / 𝑓]𝜑) |
65 | | bnj607.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
66 | 64, 65 | bnj154 32758 |
. . . . . . . . . . . . 13
⊢ (𝜑0 ↔ (ℎ‘∅) = pred(𝑥, 𝐴, 𝑅)) |
67 | 66, 48, 45 | bnj526 32768 |
. . . . . . . . . . . 12
⊢ (𝜑1 ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅)) |
68 | 63, 67 | bitr4i 277 |
. . . . . . . . . . 11
⊢ (𝜑″ ↔ 𝜑1) |
69 | | bnj607.33 |
. . . . . . . . . . . 12
⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
70 | | bnj607.2 |
. . . . . . . . . . . . . 14
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
71 | | bnj607.401 |
. . . . . . . . . . . . . 14
⊢ (𝜓0 ↔ [ℎ / 𝑓]𝜓) |
72 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ ℎ ∈ V |
73 | 70, 71, 72 | bnj540 32772 |
. . . . . . . . . . . . 13
⊢ (𝜓0 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (ℎ‘suc 𝑖) = ∪ 𝑦 ∈ (ℎ‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
74 | 73, 51, 45 | bnj540 32772 |
. . . . . . . . . . . 12
⊢ (𝜓1 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
75 | 69, 74 | bitr4i 277 |
. . . . . . . . . . 11
⊢ (𝜓″ ↔ 𝜓1) |
76 | 68, 75 | anbi12i 626 |
. . . . . . . . . 10
⊢ ((𝜑″ ∧ 𝜓″) ↔ (𝜑1 ∧ 𝜓1)) |
77 | 76 | anbi2i 622 |
. . . . . . . . 9
⊢ ((𝐺 Fn 𝑛 ∧ (𝜑″ ∧ 𝜓″)) ↔ (𝐺 Fn 𝑛 ∧ (𝜑1 ∧ 𝜓1))) |
78 | | 3anass 1093 |
. . . . . . . . 9
⊢ ((𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″) ↔ (𝐺 Fn 𝑛 ∧ (𝜑″ ∧ 𝜓″))) |
79 | | 3anass 1093 |
. . . . . . . . 9
⊢ ((𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1) ↔ (𝐺 Fn 𝑛 ∧ (𝜑1 ∧ 𝜓1))) |
80 | 77, 78, 79 | 3bitr4i 302 |
. . . . . . . 8
⊢ ((𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″) ↔ (𝐺 Fn 𝑛 ∧ 𝜑1 ∧ 𝜓1)) |
81 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎℎ(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) |
82 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑓 ℎ Fn 𝑛 |
83 | | nfsbc1v 3731 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓[ℎ / 𝑓]𝜑 |
84 | 64, 83 | nfxfr 1856 |
. . . . . . . . . 10
⊢
Ⅎ𝑓𝜑0 |
85 | | nfsbc1v 3731 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓[ℎ / 𝑓]𝜓 |
86 | 71, 85 | nfxfr 1856 |
. . . . . . . . . 10
⊢
Ⅎ𝑓𝜓0 |
87 | 82, 84, 86 | nf3an 1905 |
. . . . . . . . 9
⊢
Ⅎ𝑓(ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0) |
88 | | fneq1 6508 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → (𝑓 Fn 𝑛 ↔ ℎ Fn 𝑛)) |
89 | | sbceq1a 3722 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝜑 ↔ [ℎ / 𝑓]𝜑)) |
90 | 89, 64 | bitr4di 288 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → (𝜑 ↔ 𝜑0)) |
91 | | sbceq1a 3722 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝜓 ↔ [ℎ / 𝑓]𝜓)) |
92 | 91, 71 | bitr4di 288 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → (𝜓 ↔ 𝜓0)) |
93 | 88, 90, 92 | 3anbi123d 1434 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0))) |
94 | 81, 87, 93 | cbvexv1 2341 |
. . . . . . . 8
⊢
(∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∃ℎ(ℎ Fn 𝑛 ∧ 𝜑0 ∧ 𝜓0)) |
95 | 62, 80, 94 | 3imtr4i 291 |
. . . . . . 7
⊢ ((𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
96 | 44, 95 | exlimi 2213 |
. . . . . 6
⊢
(∃𝑓(𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
97 | 38, 43, 96 | 3syl 18 |
. . . . 5
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ (𝜒′ ∧ 𝜂)) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
98 | 97 | expcom 413 |
. . . 4
⊢ ((𝜒′ ∧ 𝜂) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
99 | 98 | exlimivv 1936 |
. . 3
⊢
(∃𝑚∃𝑝(𝜒′ ∧ 𝜂) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
100 | 11, 24, 99 | 3syl 18 |
. 2
⊢ (((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷) ∧ 𝜃) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
101 | 100 | 3impa 1108 |
1
⊢ ((𝑛 ≠ 1o ∧ 𝑛 ∈ 𝐷 ∧ 𝜃) → ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |