MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadcaddlem Structured version   Visualization version   GIF version

Theorem sadcaddlem 16490
Description: Lemma for sadcadd 16491. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a (𝜑𝐴 ⊆ ℕ0)
sadval.b (𝜑𝐵 ⊆ ℕ0)
sadval.c 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
sadcp1.n (𝜑𝑁 ∈ ℕ0)
sadcadd.k 𝐾 = (bits ↾ ℕ0)
sadcaddlem.1 (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
Assertion
Ref Expression
sadcaddlem (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ (2↑(𝑁 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))))))
Distinct variable groups:   𝑚,𝑐,𝑛   𝐴,𝑐,𝑚   𝐵,𝑐,𝑚   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑚,𝑛,𝑐)   𝐴(𝑛)   𝐵(𝑛)   𝐶(𝑚,𝑛,𝑐)   𝐾(𝑚,𝑛,𝑐)   𝑁(𝑚,𝑐)

Proof of Theorem sadcaddlem
StepHypRef Expression
1 cad1 1613 . . . . 5 (∅ ∈ (𝐶𝑁) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
21adantl 481 . . . 4 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
3 2nn 12336 . . . . . . . . . . 11 2 ∈ ℕ
43a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℕ)
5 sadcp1.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
64, 5nnexpcld 14280 . . . . . . . . 9 (𝜑 → (2↑𝑁) ∈ ℕ)
76nnred 12278 . . . . . . . 8 (𝜑 → (2↑𝑁) ∈ ℝ)
87ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (2↑𝑁) ∈ ℝ)
9 inss1 4244 . . . . . . . . . . . . 13 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
10 sadval.a . . . . . . . . . . . . 13 (𝜑𝐴 ⊆ ℕ0)
119, 10sstrid 4006 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
12 fzofi 14011 . . . . . . . . . . . . . 14 (0..^𝑁) ∈ Fin
1312a1i 11 . . . . . . . . . . . . 13 (𝜑 → (0..^𝑁) ∈ Fin)
14 inss2 4245 . . . . . . . . . . . . 13 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
15 ssfi 9211 . . . . . . . . . . . . 13 (((0..^𝑁) ∈ Fin ∧ (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
1613, 14, 15sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ Fin)
17 elfpw 9391 . . . . . . . . . . . 12 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐴 ∩ (0..^𝑁)) ∈ Fin))
1811, 16, 17sylanbrc 583 . . . . . . . . . . 11 (𝜑 → (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
19 bitsf1o 16478 . . . . . . . . . . . . . . 15 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
20 f1ocnv 6860 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
2119, 20ax-mp 5 . . . . . . . . . . . . . 14 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
22 sadcadd.k . . . . . . . . . . . . . . 15 𝐾 = (bits ↾ ℕ0)
23 f1oeq1 6836 . . . . . . . . . . . . . . 15 (𝐾 = (bits ↾ ℕ0) → (𝐾:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0))
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (𝐾:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
2521, 24mpbir 231 . . . . . . . . . . . . 13 𝐾:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0
26 f1of 6848 . . . . . . . . . . . . 13 (𝐾:(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
2725, 26ax-mp 5 . . . . . . . . . . . 12 𝐾:(𝒫 ℕ0 ∩ Fin)⟶ℕ0
2827ffvelcdmi 7102 . . . . . . . . . . 11 ((𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
2918, 28syl 17 . . . . . . . . . 10 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℕ0)
30 inss1 4244 . . . . . . . . . . . . 13 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
31 sadval.b . . . . . . . . . . . . 13 (𝜑𝐵 ⊆ ℕ0)
3230, 31sstrid 4006 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
33 inss2 4245 . . . . . . . . . . . . 13 (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
34 ssfi 9211 . . . . . . . . . . . . 13 (((0..^𝑁) ∈ Fin ∧ (𝐵 ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
3513, 33, 34sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ Fin)
36 elfpw 9391 . . . . . . . . . . . 12 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((𝐵 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ∈ Fin))
3732, 35, 36sylanbrc 583 . . . . . . . . . . 11 (𝜑 → (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
3827ffvelcdmi 7102 . . . . . . . . . . 11 ((𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
3937, 38syl 17 . . . . . . . . . 10 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℕ0)
4029, 39nn0addcld 12588 . . . . . . . . 9 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℕ0)
4140nn0red 12585 . . . . . . . 8 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
4241ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
43 2nn0 12540 . . . . . . . . . . . . 13 2 ∈ ℕ0
4443a1i 11 . . . . . . . . . . . 12 ((𝜑𝑁𝐴) → 2 ∈ ℕ0)
455adantr 480 . . . . . . . . . . . 12 ((𝜑𝑁𝐴) → 𝑁 ∈ ℕ0)
4644, 45nn0expcld 14281 . . . . . . . . . . 11 ((𝜑𝑁𝐴) → (2↑𝑁) ∈ ℕ0)
47 0nn0 12538 . . . . . . . . . . . 12 0 ∈ ℕ0
4847a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑁𝐴) → 0 ∈ ℕ0)
4946, 48ifclda 4565 . . . . . . . . . 10 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
5043a1i 11 . . . . . . . . . . . 12 ((𝜑𝑁𝐵) → 2 ∈ ℕ0)
515adantr 480 . . . . . . . . . . . 12 ((𝜑𝑁𝐵) → 𝑁 ∈ ℕ0)
5250, 51nn0expcld 14281 . . . . . . . . . . 11 ((𝜑𝑁𝐵) → (2↑𝑁) ∈ ℕ0)
5347a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝑁𝐵) → 0 ∈ ℕ0)
5452, 53ifclda 4565 . . . . . . . . . 10 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
5549, 54nn0addcld 12588 . . . . . . . . 9 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℕ0)
5655nn0red 12585 . . . . . . . 8 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℝ)
5756ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℝ)
58 sadcaddlem.1 . . . . . . . . 9 (𝜑 → (∅ ∈ (𝐶𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))))
5958biimpa 476 . . . . . . . 8 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
6059adantr 480 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
616nnnn0d 12584 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑁) ∈ ℕ0)
62 ifcl 4575 . . . . . . . . . . . . 13 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6361, 47, 62sylancl 586 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℕ0)
6463nn0ge0d 12587 . . . . . . . . . . 11 (𝜑 → 0 ≤ if(𝑁𝐵, (2↑𝑁), 0))
657adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑁𝐵) → (2↑𝑁) ∈ ℝ)
66 0red 11261 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑁𝐵) → 0 ∈ ℝ)
6765, 66ifclda 4565 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℝ)
687, 67addge01d 11848 . . . . . . . . . . 11 (𝜑 → (0 ≤ if(𝑁𝐵, (2↑𝑁), 0) ↔ (2↑𝑁) ≤ ((2↑𝑁) + if(𝑁𝐵, (2↑𝑁), 0))))
6964, 68mpbid 232 . . . . . . . . . 10 (𝜑 → (2↑𝑁) ≤ ((2↑𝑁) + if(𝑁𝐵, (2↑𝑁), 0)))
7069ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐴) → (2↑𝑁) ≤ ((2↑𝑁) + if(𝑁𝐵, (2↑𝑁), 0)))
71 iftrue 4536 . . . . . . . . . . 11 (𝑁𝐴 → if(𝑁𝐴, (2↑𝑁), 0) = (2↑𝑁))
7271adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐴) → if(𝑁𝐴, (2↑𝑁), 0) = (2↑𝑁))
7372oveq1d 7445 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐴) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = ((2↑𝑁) + if(𝑁𝐵, (2↑𝑁), 0)))
7470, 73breqtrrd 5175 . . . . . . . 8 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐴) → (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))
75 ifcl 4575 . . . . . . . . . . . . 13 (((2↑𝑁) ∈ ℕ0 ∧ 0 ∈ ℕ0) → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
7661, 47, 75sylancl 586 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℕ0)
7776nn0ge0d 12587 . . . . . . . . . . 11 (𝜑 → 0 ≤ if(𝑁𝐴, (2↑𝑁), 0))
787adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑁𝐴) → (2↑𝑁) ∈ ℝ)
79 0red 11261 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑁𝐴) → 0 ∈ ℝ)
8078, 79ifclda 4565 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℝ)
817, 80addge02d 11849 . . . . . . . . . . 11 (𝜑 → (0 ≤ if(𝑁𝐴, (2↑𝑁), 0) ↔ (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + (2↑𝑁))))
8277, 81mpbid 232 . . . . . . . . . 10 (𝜑 → (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + (2↑𝑁)))
8382ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐵) → (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + (2↑𝑁)))
84 iftrue 4536 . . . . . . . . . . 11 (𝑁𝐵 → if(𝑁𝐵, (2↑𝑁), 0) = (2↑𝑁))
8584adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐵) → if(𝑁𝐵, (2↑𝑁), 0) = (2↑𝑁))
8685oveq2d 7446 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐵) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = (if(𝑁𝐴, (2↑𝑁), 0) + (2↑𝑁)))
8783, 86breqtrrd 5175 . . . . . . . 8 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ 𝑁𝐵) → (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))
8874, 87jaodan 959 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (2↑𝑁) ≤ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))
898, 8, 42, 57, 60, 88le2addd 11879 . . . . . 6 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
9089ex 412 . . . . 5 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → ((𝑁𝐴𝑁𝐵) → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
91 ioran 985 . . . . . 6 (¬ (𝑁𝐴𝑁𝐵) ↔ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵))
92 iffalse 4539 . . . . . . . . . . . . . 14 𝑁𝐴 → if(𝑁𝐴, (2↑𝑁), 0) = 0)
9392ad2antrl 728 . . . . . . . . . . . . 13 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → if(𝑁𝐴, (2↑𝑁), 0) = 0)
94 iffalse 4539 . . . . . . . . . . . . . 14 𝑁𝐵 → if(𝑁𝐵, (2↑𝑁), 0) = 0)
9594ad2antll 729 . . . . . . . . . . . . 13 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → if(𝑁𝐵, (2↑𝑁), 0) = 0)
9693, 95oveq12d 7448 . . . . . . . . . . . 12 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = (0 + 0))
97 00id 11433 . . . . . . . . . . . 12 (0 + 0) = 0
9896, 97eqtrdi 2790 . . . . . . . . . . 11 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = 0)
9998oveq2d 7446 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + 0))
10029nn0red 12585 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℝ)
101100ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℝ)
10239nn0red 12585 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℝ)
103102ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℝ)
104101, 103readdcld 11287 . . . . . . . . . . . 12 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
105104recnd 11286 . . . . . . . . . . 11 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℂ)
106105addridd 11458 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + 0) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
10799, 106eqtrd 2774 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
10822fveq1i 6907 . . . . . . . . . . . . . . . 16 (𝐾‘(𝐴 ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁)))
109108fveq2i 6909 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0)‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))))
11029fvresd 6926 . . . . . . . . . . . . . . 15 (𝜑 → ((bits ↾ ℕ0)‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) = (bits‘(𝐾‘(𝐴 ∩ (0..^𝑁)))))
111 f1ocnvfv2 7296 . . . . . . . . . . . . . . . 16 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐴 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁)))) = (𝐴 ∩ (0..^𝑁)))
11219, 18, 111sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁)))) = (𝐴 ∩ (0..^𝑁)))
113109, 110, 1123eqtr3a 2798 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) = (𝐴 ∩ (0..^𝑁)))
114113, 14eqsstrdi 4049 . . . . . . . . . . . . 13 (𝜑 → (bits‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
11529nn0zd 12636 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℤ)
116 bitsfzo 16468 . . . . . . . . . . . . . 14 (((𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
117115, 5, 116syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(𝐴 ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
118114, 117mpbird 257 . . . . . . . . . . . 12 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
119 elfzolt2 13704 . . . . . . . . . . . 12 ((𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → (𝐾‘(𝐴 ∩ (0..^𝑁))) < (2↑𝑁))
120118, 119syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) < (2↑𝑁))
12122fveq1i 6907 . . . . . . . . . . . . . . . 16 (𝐾‘(𝐵 ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))
122121fveq2i 6909 . . . . . . . . . . . . . . 15 ((bits ↾ ℕ0)‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) = ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))))
12339fvresd 6926 . . . . . . . . . . . . . . 15 (𝜑 → ((bits ↾ ℕ0)‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) = (bits‘(𝐾‘(𝐵 ∩ (0..^𝑁)))))
124 f1ocnvfv2 7296 . . . . . . . . . . . . . . . 16 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (𝐵 ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) = (𝐵 ∩ (0..^𝑁)))
12519, 37, 124sylancr 587 . . . . . . . . . . . . . . 15 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) = (𝐵 ∩ (0..^𝑁)))
126122, 123, 1253eqtr3a 2798 . . . . . . . . . . . . . 14 (𝜑 → (bits‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) = (𝐵 ∩ (0..^𝑁)))
127126, 33eqsstrdi 4049 . . . . . . . . . . . . 13 (𝜑 → (bits‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
12839nn0zd 12636 . . . . . . . . . . . . . 14 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℤ)
129 bitsfzo 16468 . . . . . . . . . . . . . 14 (((𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
130128, 5, 129syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘(𝐾‘(𝐵 ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
131127, 130mpbird 257 . . . . . . . . . . . 12 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
132 elfzolt2 13704 . . . . . . . . . . . 12 ((𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → (𝐾‘(𝐵 ∩ (0..^𝑁))) < (2↑𝑁))
133131, 132syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) < (2↑𝑁))
134100, 102, 7, 7, 120, 133lt2addd 11883 . . . . . . . . . 10 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < ((2↑𝑁) + (2↑𝑁)))
135134ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < ((2↑𝑁) + (2↑𝑁)))
136107, 135eqbrtrd 5169 . . . . . . . 8 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) < ((2↑𝑁) + (2↑𝑁)))
13780ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℝ)
13867ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℝ)
139137, 138readdcld 11287 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℝ)
140104, 139readdcld 11287 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℝ)
1417ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → (2↑𝑁) ∈ ℝ)
142141, 141readdcld 11287 . . . . . . . . 9 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ((2↑𝑁) + (2↑𝑁)) ∈ ℝ)
143140, 142ltnled 11405 . . . . . . . 8 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) < ((2↑𝑁) + (2↑𝑁)) ↔ ¬ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
144136, 143mpbid 232 . . . . . . 7 (((𝜑 ∧ ∅ ∈ (𝐶𝑁)) ∧ (¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵)) → ¬ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
145144ex 412 . . . . . 6 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → ((¬ 𝑁𝐴 ∧ ¬ 𝑁𝐵) → ¬ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
14691, 145biimtrid 242 . . . . 5 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (¬ (𝑁𝐴𝑁𝐵) → ¬ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
14790, 146impcon4bid 227 . . . 4 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → ((𝑁𝐴𝑁𝐵) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
1482, 147bitrd 279 . . 3 ((𝜑 ∧ ∅ ∈ (𝐶𝑁)) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
149 cad0 1614 . . . . 5 (¬ ∅ ∈ (𝐶𝑁) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
150149adantl 481 . . . 4 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ (𝑁𝐴𝑁𝐵)))
15140nn0ge0d 12587 . . . . . . . . 9 (𝜑 → 0 ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))
1527, 7readdcld 11287 . . . . . . . . . 10 (𝜑 → ((2↑𝑁) + (2↑𝑁)) ∈ ℝ)
153152, 41addge02d 11849 . . . . . . . . 9 (𝜑 → (0 ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((2↑𝑁) + (2↑𝑁)))))
154151, 153mpbid 232 . . . . . . . 8 (𝜑 → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((2↑𝑁) + (2↑𝑁))))
155154ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((2↑𝑁) + (2↑𝑁))))
15671, 84oveqan12d 7449 . . . . . . . . 9 ((𝑁𝐴𝑁𝐵) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = ((2↑𝑁) + (2↑𝑁)))
157156adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = ((2↑𝑁) + (2↑𝑁)))
158157oveq2d 7446 . . . . . . 7 (((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + ((2↑𝑁) + (2↑𝑁))))
159155, 158breqtrrd 5175 . . . . . 6 (((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) ∧ (𝑁𝐴𝑁𝐵)) → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
160159ex 412 . . . . 5 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((𝑁𝐴𝑁𝐵) → ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
161100adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℝ)
162102adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℝ)
163161, 162readdcld 11287 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
1647adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (2↑𝑁) ∈ ℝ)
1657, 41lenltd 11404 . . . . . . . . . . . 12 (𝜑 → ((2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ↔ ¬ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < (2↑𝑁)))
16658, 165bitrd 279 . . . . . . . . . . 11 (𝜑 → (∅ ∈ (𝐶𝑁) ↔ ¬ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < (2↑𝑁)))
167166con2bid 354 . . . . . . . . . 10 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < (2↑𝑁) ↔ ¬ ∅ ∈ (𝐶𝑁)))
168167biimpar 477 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) < (2↑𝑁))
169163, 164, 164, 168ltadd1dd 11871 . . . . . . . 8 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < ((2↑𝑁) + (2↑𝑁)))
170163, 164readdcld 11287 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) ∈ ℝ)
171152adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((2↑𝑁) + (2↑𝑁)) ∈ ℝ)
17241, 56readdcld 11287 . . . . . . . . . 10 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℝ)
173172adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℝ)
174 ltletr 11350 . . . . . . . . 9 (((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) ∈ ℝ ∧ ((2↑𝑁) + (2↑𝑁)) ∈ ℝ ∧ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) ∈ ℝ) → (((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < ((2↑𝑁) + (2↑𝑁)) ∧ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
175170, 171, 173, 174syl3anc 1370 . . . . . . . 8 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < ((2↑𝑁) + (2↑𝑁)) ∧ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
176169, 175mpand 695 . . . . . . 7 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
17756adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ∈ ℝ)
17841adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) ∈ ℝ)
179164, 177, 178ltadd2d 11414 . . . . . . 7 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((2↑𝑁) < (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ↔ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (2↑𝑁)) < (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
180176, 179sylibrd 259 . . . . . 6 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) → (2↑𝑁) < (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
1817, 56ltnled 11405 . . . . . . . 8 (𝜑 → ((2↑𝑁) < (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ↔ ¬ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁)))
18263nn0cnd 12586 . . . . . . . . . . . . 13 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ∈ ℂ)
183182addlidd 11459 . . . . . . . . . . . 12 (𝜑 → (0 + if(𝑁𝐵, (2↑𝑁), 0)) = if(𝑁𝐵, (2↑𝑁), 0))
1847leidd 11826 . . . . . . . . . . . . 13 (𝜑 → (2↑𝑁) ≤ (2↑𝑁))
18561nn0ge0d 12587 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (2↑𝑁))
186 breq1 5150 . . . . . . . . . . . . . 14 ((2↑𝑁) = if(𝑁𝐵, (2↑𝑁), 0) → ((2↑𝑁) ≤ (2↑𝑁) ↔ if(𝑁𝐵, (2↑𝑁), 0) ≤ (2↑𝑁)))
187 breq1 5150 . . . . . . . . . . . . . 14 (0 = if(𝑁𝐵, (2↑𝑁), 0) → (0 ≤ (2↑𝑁) ↔ if(𝑁𝐵, (2↑𝑁), 0) ≤ (2↑𝑁)))
188186, 187ifboth 4569 . . . . . . . . . . . . 13 (((2↑𝑁) ≤ (2↑𝑁) ∧ 0 ≤ (2↑𝑁)) → if(𝑁𝐵, (2↑𝑁), 0) ≤ (2↑𝑁))
189184, 185, 188syl2anc 584 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐵, (2↑𝑁), 0) ≤ (2↑𝑁))
190183, 189eqbrtrd 5169 . . . . . . . . . . 11 (𝜑 → (0 + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁))
19192oveq1d 7445 . . . . . . . . . . . 12 𝑁𝐴 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = (0 + if(𝑁𝐵, (2↑𝑁), 0)))
192191breq1d 5157 . . . . . . . . . . 11 𝑁𝐴 → ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁) ↔ (0 + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁)))
193190, 192syl5ibrcom 247 . . . . . . . . . 10 (𝜑 → (¬ 𝑁𝐴 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁)))
194193con1d 145 . . . . . . . . 9 (𝜑 → (¬ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁) → 𝑁𝐴))
19576nn0cnd 12586 . . . . . . . . . . . . 13 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ∈ ℂ)
196195addridd 11458 . . . . . . . . . . . 12 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + 0) = if(𝑁𝐴, (2↑𝑁), 0))
197 breq1 5150 . . . . . . . . . . . . . 14 ((2↑𝑁) = if(𝑁𝐴, (2↑𝑁), 0) → ((2↑𝑁) ≤ (2↑𝑁) ↔ if(𝑁𝐴, (2↑𝑁), 0) ≤ (2↑𝑁)))
198 breq1 5150 . . . . . . . . . . . . . 14 (0 = if(𝑁𝐴, (2↑𝑁), 0) → (0 ≤ (2↑𝑁) ↔ if(𝑁𝐴, (2↑𝑁), 0) ≤ (2↑𝑁)))
199197, 198ifboth 4569 . . . . . . . . . . . . 13 (((2↑𝑁) ≤ (2↑𝑁) ∧ 0 ≤ (2↑𝑁)) → if(𝑁𝐴, (2↑𝑁), 0) ≤ (2↑𝑁))
200184, 185, 199syl2anc 584 . . . . . . . . . . . 12 (𝜑 → if(𝑁𝐴, (2↑𝑁), 0) ≤ (2↑𝑁))
201196, 200eqbrtrd 5169 . . . . . . . . . . 11 (𝜑 → (if(𝑁𝐴, (2↑𝑁), 0) + 0) ≤ (2↑𝑁))
20294oveq2d 7446 . . . . . . . . . . . 12 𝑁𝐵 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) = (if(𝑁𝐴, (2↑𝑁), 0) + 0))
203202breq1d 5157 . . . . . . . . . . 11 𝑁𝐵 → ((if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁) ↔ (if(𝑁𝐴, (2↑𝑁), 0) + 0) ≤ (2↑𝑁)))
204201, 203syl5ibrcom 247 . . . . . . . . . 10 (𝜑 → (¬ 𝑁𝐵 → (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁)))
205204con1d 145 . . . . . . . . 9 (𝜑 → (¬ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁) → 𝑁𝐵))
206194, 205jcad 512 . . . . . . . 8 (𝜑 → (¬ (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) ≤ (2↑𝑁) → (𝑁𝐴𝑁𝐵)))
207181, 206sylbid 240 . . . . . . 7 (𝜑 → ((2↑𝑁) < (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) → (𝑁𝐴𝑁𝐵)))
208207adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((2↑𝑁) < (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)) → (𝑁𝐴𝑁𝐵)))
209180, 208syld 47 . . . . 5 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))) → (𝑁𝐴𝑁𝐵)))
210160, 209impbid 212 . . . 4 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → ((𝑁𝐴𝑁𝐵) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
211150, 210bitrd 279 . . 3 ((𝜑 ∧ ¬ ∅ ∈ (𝐶𝑁)) → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
212148, 211pm2.61dan 813 . 2 (𝜑 → (cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁)) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
213 sadval.c . . 3 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
21410, 31, 213, 5sadcp1 16488 . 2 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁𝐴, 𝑁𝐵, ∅ ∈ (𝐶𝑁))))
215 2cnd 12341 . . . . 5 (𝜑 → 2 ∈ ℂ)
216215, 5expp1d 14183 . . . 4 (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
2176nncnd 12279 . . . . 5 (𝜑 → (2↑𝑁) ∈ ℂ)
218217times2d 12507 . . . 4 (𝜑 → ((2↑𝑁) · 2) = ((2↑𝑁) + (2↑𝑁)))
219216, 218eqtrd 2774 . . 3 (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) + (2↑𝑁)))
22022bitsinvp1 16482 . . . . . 6 ((𝐴 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
22110, 5, 220syl2anc 584 . . . . 5 (𝜑 → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)))
22222bitsinvp1 16482 . . . . . 6 ((𝐵 ⊆ ℕ0𝑁 ∈ ℕ0) → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
22331, 5, 222syl2anc 584 . . . . 5 (𝜑 → (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0)))
224221, 223oveq12d 7448 . . . 4 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))))
22529nn0cnd 12586 . . . . 5 (𝜑 → (𝐾‘(𝐴 ∩ (0..^𝑁))) ∈ ℂ)
22639nn0cnd 12586 . . . . 5 (𝜑 → (𝐾‘(𝐵 ∩ (0..^𝑁))) ∈ ℂ)
227225, 195, 226, 182add4d 11487 . . . 4 (𝜑 → (((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁𝐴, (2↑𝑁), 0)) + ((𝐾‘(𝐵 ∩ (0..^𝑁))) + if(𝑁𝐵, (2↑𝑁), 0))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
228224, 227eqtrd 2774 . . 3 (𝜑 → ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0))))
229219, 228breq12d 5160 . 2 (𝜑 → ((2↑(𝑁 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))) ↔ ((2↑𝑁) + (2↑𝑁)) ≤ (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) + (if(𝑁𝐴, (2↑𝑁), 0) + if(𝑁𝐵, (2↑𝑁), 0)))))
230212, 214, 2293bitr4d 311 1 (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ (2↑(𝑁 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  caddwcad 1602  wcel 2105  cin 3961  wss 3962  c0 4338  ifcif 4530  𝒫 cpw 4604   class class class wbr 5147  cmpt 5230  ccnv 5687  cres 5690  wf 6558  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  cmpo 7432  1oc1o 8497  2oc2o 8498  Fincfn 8983  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  cn 12263  2c2 12318  0cn0 12523  cz 12610  ..^cfzo 13690  seqcseq 14038  cexp 14098  bitscbits 16452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1508  df-tru 1539  df-fal 1549  df-cad 1603  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-dvds 16287  df-bits 16455
This theorem is referenced by:  sadcadd  16491
  Copyright terms: Public domain W3C validator