MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv3hv Structured version   Visualization version   GIF version

Theorem cbv3hv 2335
Description: Rule used to change bound variables, using implicit substitution. Version of cbv3h 2402 with a disjoint variable condition on 𝑥, 𝑦, which does not require ax-13 2370. Was used in a proof of axc11n 2424 (but of independent interest). (Contributed by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 29-Nov-2020.) (Proof shortened by BJ, 30-Nov-2020.)
Hypotheses
Ref Expression
cbv3hv.nf1 (𝜑 → ∀𝑦𝜑)
cbv3hv.nf2 (𝜓 → ∀𝑥𝜓)
cbv3hv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbv3hv (∀𝑥𝜑 → ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbv3hv
StepHypRef Expression
1 cbv3hv.nf1 . . 3 (𝜑 → ∀𝑦𝜑)
21nf5i 2140 . 2 𝑦𝜑
3 cbv3hv.nf2 . . 3 (𝜓 → ∀𝑥𝜓)
43nf5i 2140 . 2 𝑥𝜓
5 cbv3hv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
62, 4, 5cbv3v 2330 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-10 2135  ax-11 2152  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-ex 1780  df-nf 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator