MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalv1 Structured version   Visualization version   GIF version

Theorem cbvalv1 2329
Description: Rule used to change bound variables, using implicit substitution. Version of cbval 2389 with a disjoint variable condition, which does not require ax-13 2363. See cbvalvw 2031 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2391 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalv1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvalv1
StepHypRef Expression
1 cbvalv1.nf1 . . 3 𝑦𝜑
2 cbvalv1.nf2 . . 3 𝑥𝜓
3 cbvalv1.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 228 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbv3v 2323 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
63biimprd 247 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
76equcoms 2015 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
82, 1, 7cbv3v 2323 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
95, 8impbii 208 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wnf 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-11 2146  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-nf 1778
This theorem is referenced by:  cbvexv1  2330  cbval2v  2331  sb8fOLD  2342  sbbib  2349  cbvsbvf  2352  sb8eulem  2584  cbvmow  2589  abbib  2796  cleqh  2855  cleqf  2926  cbvralfw  3293  cbvralfwOLD  3312  cbvralf  3348  ralab2  3685  cbvralcsf  3930  dfss2f  3964  ab0OLD  4367  elintabOLD  4953  reusv2lem4  5389  cbviotaw  6492  cbviota  6495  sb8iota  6497  dffun6f  6551  findcard2  9159  findcard2OLD  9279  aceq1  10107  bnj1385  34298  sbcalf  37438  alrimii  37443  aomclem6  42256  rababg  42780
  Copyright terms: Public domain W3C validator