MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalv1 Structured version   Visualization version   GIF version

Theorem cbvalv1 2342
Description: Rule used to change bound variables, using implicit substitution. Version of cbval 2402 with a disjoint variable condition, which does not require ax-13 2376. See cbvalvw 2035 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2404 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalv1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvalv1
StepHypRef Expression
1 cbvalv1.nf1 . . 3 𝑦𝜑
2 cbvalv1.nf2 . . 3 𝑥𝜓
3 cbvalv1.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 229 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbv3v 2336 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
63biimprd 248 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
76equcoms 2019 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
82, 1, 7cbv3v 2336 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
95, 8impbii 209 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784
This theorem is referenced by:  cbvexv1  2343  cbval2v  2344  sb8fOLD  2356  sbbib  2363  cbvsbvf  2365  sb8eulem  2597  cbvmow  2602  abbib  2804  cleqh  2864  cleqf  2927  cbvralfw  3284  cbvralf  3339  ralab2  3680  cbvralcsf  3916  dfssf  3949  elintabOLD  4935  reusv2lem4  5371  cbviotaw  6491  cbviota  6493  sb8iota  6495  dffun6f  6549  findcard2  9178  aceq1  10131  bnj1385  34863  sbcalf  38138  alrimii  38143  aomclem6  43083  rababg  43598
  Copyright terms: Public domain W3C validator