![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvalv1 | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbval 2400 with a disjoint variable condition, which does not require ax-13 2374. See cbvalvw 2032 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2402 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalv1 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalv1.nf1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvalv1.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvalv1.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | biimpd 229 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
5 | 1, 2, 4 | cbv3v 2335 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
6 | 3 | biimprd 248 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
7 | 6 | equcoms 2016 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
8 | 2, 1, 7 | cbv3v 2335 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1534 Ⅎwnf 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-11 2154 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-nf 1780 |
This theorem is referenced by: cbvexv1 2342 cbval2v 2343 sb8fOLD 2354 sbbib 2361 cbvsbvf 2363 sb8eulem 2595 cbvmow 2600 abbib 2808 cleqh 2868 cleqf 2931 cbvralfw 3301 cbvralf 3357 ralab2 3705 cbvralcsf 3952 dfssf 3985 elintabOLD 4963 reusv2lem4 5406 cbviotaw 6522 cbviota 6524 sb8iota 6526 dffun6f 6580 findcard2 9202 aceq1 10154 bnj1385 34824 sbcalf 38100 alrimii 38105 aomclem6 43047 rababg 43563 |
Copyright terms: Public domain | W3C validator |