MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalv1 Structured version   Visualization version   GIF version

Theorem cbvalv1 2340
Description: Rule used to change bound variables, using implicit substitution. Version of cbval 2398 with a disjoint variable condition, which does not require ax-13 2372. See cbvalvw 2040 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2400 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalv1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvalv1
StepHypRef Expression
1 cbvalv1.nf1 . . 3 𝑦𝜑
2 cbvalv1.nf2 . . 3 𝑥𝜓
3 cbvalv1.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 228 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbv3v 2334 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
63biimprd 247 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
76equcoms 2024 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
82, 1, 7cbv3v 2334 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
95, 8impbii 208 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  cbvexv1  2341  cbval2v  2342  cbval2vOLD  2343  sb8v  2352  sbbib  2359  sbievg  2361  sb8eulem  2598  cbvmow  2603  abbi  2811  cleqh  2862  cleqf  2937  cbvralfw  3358  cbvralfwOLD  3359  cbvralf  3361  ralab2  3627  ralab2OLD  3628  cbvralcsf  3873  dfss2f  3907  ab0OLD  4306  elintab  4887  reusv2lem4  5319  cbviotaw  6383  cbviota  6386  sb8iota  6388  dffun6f  6432  findcard2  8909  findcard2OLD  8986  aceq1  9804  bnj1385  32712  sbcalf  36199  alrimii  36204  aomclem6  40800  rababg  41070
  Copyright terms: Public domain W3C validator