MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalv1 Structured version   Visualization version   GIF version

Theorem cbvalv1 2339
Description: Rule used to change bound variables, using implicit substitution. Version of cbval 2396 with a disjoint variable condition, which does not require ax-13 2370. See cbvalvw 2036 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2398 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalv1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvalv1
StepHypRef Expression
1 cbvalv1.nf1 . . 3 𝑦𝜑
2 cbvalv1.nf2 . . 3 𝑥𝜓
3 cbvalv1.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 229 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbv3v 2333 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
63biimprd 248 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
76equcoms 2020 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
82, 1, 7cbv3v 2333 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
95, 8impbii 209 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784
This theorem is referenced by:  cbvexv1  2340  cbval2v  2341  sbbib  2359  cbvsbvf  2361  sb8eulem  2591  cbvmow  2596  abbib  2798  cleqh  2857  cleqf  2920  cbvralfw  3278  cbvralf  3334  ralab2  3668  cbvralcsf  3904  dfssf  3937  elintabOLD  4923  reusv2lem4  5356  cbviotaw  6471  cbviota  6473  sb8iota  6475  dffun6f  6529  findcard2  9128  aceq1  10070  bnj1385  34822  sbcalf  38108  alrimii  38113  aomclem6  43048  rababg  43563
  Copyright terms: Public domain W3C validator