| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvalv1 | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbval 2396 with a disjoint variable condition, which does not require ax-13 2370. See cbvalvw 2036 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2398 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
| cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalv1 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalv1.nf1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvalv1.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvalv1.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | biimpd 229 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 5 | 1, 2, 4 | cbv3v 2333 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| 6 | 3 | biimprd 248 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
| 7 | 6 | equcoms 2020 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
| 8 | 2, 1, 7 | cbv3v 2333 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvexv1 2340 cbval2v 2341 sbbib 2359 cbvsbvf 2361 sb8eulem 2591 cbvmow 2596 abbib 2798 cleqh 2857 cleqf 2920 cbvralfw 3270 cbvralf 3325 ralab2 3659 cbvralcsf 3895 dfssf 3928 elintabOLD 4912 reusv2lem4 5343 cbviotaw 6449 cbviota 6451 sb8iota 6453 dffun6f 6501 findcard2 9088 aceq1 10030 bnj1385 34798 sbcalf 38093 alrimii 38098 aomclem6 43032 rababg 43547 |
| Copyright terms: Public domain | W3C validator |