MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalv1 Structured version   Visualization version   GIF version

Theorem cbvalv1 2347
Description: Rule used to change bound variables, using implicit substitution. Version of cbval 2406 with a disjoint variable condition, which does not require ax-13 2380. See cbvalvw 2035 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2408 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalv1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvalv1
StepHypRef Expression
1 cbvalv1.nf1 . . 3 𝑦𝜑
2 cbvalv1.nf2 . . 3 𝑥𝜓
3 cbvalv1.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 229 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbv3v 2341 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
63biimprd 248 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
76equcoms 2019 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
82, 1, 7cbv3v 2341 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
95, 8impbii 209 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782
This theorem is referenced by:  cbvexv1  2348  cbval2v  2349  sb8fOLD  2360  sbbib  2367  cbvsbvf  2369  sb8eulem  2601  cbvmow  2606  abbib  2814  cleqh  2874  cleqf  2940  cbvralfw  3310  cbvralf  3368  ralab2  3719  cbvralcsf  3966  dfssf  3999  ab0OLD  4403  elintabOLD  4983  reusv2lem4  5419  cbviotaw  6532  cbviota  6535  sb8iota  6537  dffun6f  6591  findcard2  9230  aceq1  10186  bnj1385  34808  sbcalf  38074  alrimii  38079  aomclem6  43016  rababg  43536
  Copyright terms: Public domain W3C validator