![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvalv1 | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbval 2389 with a disjoint variable condition, which does not require ax-13 2363. See cbvalvw 2031 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2391 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalv1 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalv1.nf1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvalv1.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvalv1.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | biimpd 228 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
5 | 1, 2, 4 | cbv3v 2323 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
6 | 3 | biimprd 247 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
7 | 6 | equcoms 2015 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
8 | 2, 1, 7 | cbv3v 2323 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
9 | 5, 8 | impbii 208 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 Ⅎwnf 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-11 2146 ax-12 2163 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-nf 1778 |
This theorem is referenced by: cbvexv1 2330 cbval2v 2331 sb8fOLD 2342 sbbib 2349 cbvsbvf 2352 sb8eulem 2584 cbvmow 2589 abbib 2796 cleqh 2855 cleqf 2926 cbvralfw 3293 cbvralfwOLD 3312 cbvralf 3348 ralab2 3685 cbvralcsf 3930 dfss2f 3964 ab0OLD 4367 elintabOLD 4953 reusv2lem4 5389 cbviotaw 6492 cbviota 6495 sb8iota 6497 dffun6f 6551 findcard2 9159 findcard2OLD 9279 aceq1 10107 bnj1385 34298 sbcalf 37438 alrimii 37443 aomclem6 42256 rababg 42780 |
Copyright terms: Public domain | W3C validator |