| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvalv1 | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbval 2400 with a disjoint variable condition, which does not require ax-13 2374. See cbvalvw 2037 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2402 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
| cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalv1 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalv1.nf1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvalv1.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvalv1.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | biimpd 229 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 5 | 1, 2, 4 | cbv3v 2337 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| 6 | 3 | biimprd 248 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
| 7 | 6 | equcoms 2021 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
| 8 | 2, 1, 7 | cbv3v 2337 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-11 2162 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: cbvexv1 2344 cbval2v 2345 sbbib 2363 cbvsbvf 2365 sb8eulem 2595 cbvmow 2600 abbib 2802 cleqh 2862 cleqf 2924 cbvralfw 3273 cbvralf 3327 ralab2 3652 cbvralcsf 3888 dfssf 3921 reusv2lem4 5341 cbviotaw 6449 cbviota 6451 sb8iota 6453 dffun6f 6501 findcard2 9081 aceq1 10015 bnj1385 34865 sbcalf 38175 alrimii 38180 aomclem6 43177 rababg 43692 |
| Copyright terms: Public domain | W3C validator |