![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvalv1 | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbval 2406 with a disjoint variable condition, which does not require ax-13 2380. See cbvalvw 2035 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2408 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalv1 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalv1.nf1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvalv1.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvalv1.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | biimpd 229 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
5 | 1, 2, 4 | cbv3v 2341 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
6 | 3 | biimprd 248 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
7 | 6 | equcoms 2019 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
8 | 2, 1, 7 | cbv3v 2341 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 |
This theorem is referenced by: cbvexv1 2348 cbval2v 2349 sb8fOLD 2360 sbbib 2367 cbvsbvf 2369 sb8eulem 2601 cbvmow 2606 abbib 2814 cleqh 2874 cleqf 2940 cbvralfw 3310 cbvralf 3368 ralab2 3719 cbvralcsf 3966 dfssf 3999 ab0OLD 4403 elintabOLD 4983 reusv2lem4 5419 cbviotaw 6532 cbviota 6535 sb8iota 6537 dffun6f 6591 findcard2 9230 aceq1 10186 bnj1385 34808 sbcalf 38074 alrimii 38079 aomclem6 43016 rababg 43536 |
Copyright terms: Public domain | W3C validator |