| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvalv1 | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbval 2398 with a disjoint variable condition, which does not require ax-13 2372. See cbvalvw 2037 for a version with two more disjoint variable conditions, requiring fewer axioms, and cbvalv 2400 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
| cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalv1 | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalv1.nf1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvalv1.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvalv1.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | biimpd 229 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 5 | 1, 2, 4 | cbv3v 2335 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| 6 | 3 | biimprd 248 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
| 7 | 6 | equcoms 2021 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
| 8 | 2, 1, 7 | cbv3v 2335 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
| 9 | 5, 8 | impbii 209 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: cbvexv1 2342 cbval2v 2343 sbbib 2361 cbvsbvf 2363 sb8eulem 2593 cbvmow 2598 abbib 2800 cleqh 2860 cleqf 2923 cbvralfw 3272 cbvralf 3326 ralab2 3656 cbvralcsf 3892 dfssf 3925 reusv2lem4 5339 cbviotaw 6444 cbviota 6446 sb8iota 6448 dffun6f 6496 findcard2 9074 aceq1 10008 bnj1385 34842 sbcalf 38160 alrimii 38165 aomclem6 43098 rababg 43613 |
| Copyright terms: Public domain | W3C validator |