| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbveudavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in the existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbveudavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbveudavw | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbveudavw.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | cbvexdvaw 2037 | . . 3 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
| 3 | 1 | cbvmodavw 36226 | . . 3 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑦𝜒)) |
| 4 | 2, 3 | anbi12d 632 | . 2 ⊢ (𝜑 → ((∃𝑥𝜓 ∧ ∃*𝑥𝜓) ↔ (∃𝑦𝜒 ∧ ∃*𝑦𝜒))) |
| 5 | df-eu 2567 | . 2 ⊢ (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓)) | |
| 6 | df-eu 2567 | . 2 ⊢ (∃!𝑦𝜒 ↔ (∃𝑦𝜒 ∧ ∃*𝑦𝜒)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 ∃*wmo 2536 ∃!weu 2566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-mo 2538 df-eu 2567 |
| This theorem is referenced by: cbvreudavw 36229 cbvreudavw2 36260 |
| Copyright terms: Public domain | W3C validator |