Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbveudavw Structured version   Visualization version   GIF version

Theorem cbveudavw 36209
Description: Change bound variable in the existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbveudavw.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbveudavw (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑦𝜒))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbveudavw
StepHypRef Expression
1 cbveudavw.1 . . . 4 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
21cbvexdvaw 2038 . . 3 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
31cbvmodavw 36208 . . 3 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑦𝜒))
42, 3anbi12d 631 . 2 (𝜑 → ((∃𝑥𝜓 ∧ ∃*𝑥𝜓) ↔ (∃𝑦𝜒 ∧ ∃*𝑦𝜒)))
5 df-eu 2572 . 2 (∃!𝑥𝜓 ↔ (∃𝑥𝜓 ∧ ∃*𝑥𝜓))
6 df-eu 2572 . 2 (∃!𝑦𝜒 ↔ (∃𝑦𝜒 ∧ ∃*𝑦𝜒))
74, 5, 63bitr4g 314 1 (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1777  ∃*wmo 2541  ∃!weu 2571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-eu 2572
This theorem is referenced by:  cbvreudavw  36211  cbvreudavw2  36242
  Copyright terms: Public domain W3C validator