| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvmodavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in the at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvmodavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvmodavw | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmodavw.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 2 | equequ1 2023 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| 4 | 1, 3 | imbi12d 344 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝜓 → 𝑥 = 𝑧) ↔ (𝜒 → 𝑦 = 𝑧))) |
| 5 | 4 | cbvaldvaw 2036 | . . 3 ⊢ (𝜑 → (∀𝑥(𝜓 → 𝑥 = 𝑧) ↔ ∀𝑦(𝜒 → 𝑦 = 𝑧))) |
| 6 | 5 | exbidv 1920 | . 2 ⊢ (𝜑 → (∃𝑧∀𝑥(𝜓 → 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦(𝜒 → 𝑦 = 𝑧))) |
| 7 | df-mo 2538 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑧∀𝑥(𝜓 → 𝑥 = 𝑧)) | |
| 8 | df-mo 2538 | . 2 ⊢ (∃*𝑦𝜒 ↔ ∃𝑧∀𝑦(𝜒 → 𝑦 = 𝑧)) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∃*wmo 2536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-mo 2538 |
| This theorem is referenced by: cbveudavw 36190 cbvrmodavw 36191 cbvrmodavw2 36222 |
| Copyright terms: Public domain | W3C validator |