Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmodavw Structured version   Visualization version   GIF version

Theorem cbvmodavw 36208
Description: Change bound variable in the at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvmodavw.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvmodavw (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑦𝜒))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvmodavw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbvmodavw.1 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
2 equequ1 2024 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
32adantl 481 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝑥 = 𝑧𝑦 = 𝑧))
41, 3imbi12d 344 . . . 4 ((𝜑𝑥 = 𝑦) → ((𝜓𝑥 = 𝑧) ↔ (𝜒𝑦 = 𝑧)))
54cbvaldvaw 2037 . . 3 (𝜑 → (∀𝑥(𝜓𝑥 = 𝑧) ↔ ∀𝑦(𝜒𝑦 = 𝑧)))
65exbidv 1920 . 2 (𝜑 → (∃𝑧𝑥(𝜓𝑥 = 𝑧) ↔ ∃𝑧𝑦(𝜒𝑦 = 𝑧)))
7 df-mo 2543 . 2 (∃*𝑥𝜓 ↔ ∃𝑧𝑥(𝜓𝑥 = 𝑧))
8 df-mo 2543 . 2 (∃*𝑦𝜒 ↔ ∃𝑧𝑦(𝜒𝑦 = 𝑧))
96, 7, 83bitr4g 314 1 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wex 1777  ∃*wmo 2541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543
This theorem is referenced by:  cbveudavw  36209  cbvrmodavw  36210  cbvrmodavw2  36241
  Copyright terms: Public domain W3C validator