Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvreudavw Structured version   Visualization version   GIF version

Theorem cbvreudavw 36211
Description: Change bound variable in the restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvreudavw.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvreudavw (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑦𝐴 𝜒))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvreudavw
StepHypRef Expression
1 eleq1w 2827 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
21adantl 481 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
3 cbvreudavw.1 . . . 4 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
42, 3anbi12d 631 . . 3 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴𝜓) ↔ (𝑦𝐴𝜒)))
54cbveudavw 36209 . 2 (𝜑 → (∃!𝑥(𝑥𝐴𝜓) ↔ ∃!𝑦(𝑦𝐴𝜒)))
6 df-reu 3389 . 2 (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥(𝑥𝐴𝜓))
7 df-reu 3389 . 2 (∃!𝑦𝐴 𝜒 ↔ ∃!𝑦(𝑦𝐴𝜒))
85, 6, 73bitr4g 314 1 (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑦𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  ∃!weu 2571  ∃!wreu 3386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-eu 2572  df-clel 2819  df-reu 3389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator