| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexdvaw | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva 2409 with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by Wolf Lammen, 10-Feb-2024.) |
| Ref | Expression |
|---|---|
| cbvaldvaw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvexdvaw | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvaldvaw.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 3 | 2 | cbvaldvaw 2038 | . . 3 ⊢ (𝜑 → (∀𝑥 ¬ 𝜓 ↔ ∀𝑦 ¬ 𝜒)) |
| 4 | alnex 1781 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 5 | alnex 1781 | . . 3 ⊢ (∀𝑦 ¬ 𝜒 ↔ ¬ ∃𝑦𝜒) | |
| 6 | 3, 4, 5 | 3bitr3g 313 | . 2 ⊢ (𝜑 → (¬ ∃𝑥𝜓 ↔ ¬ ∃𝑦𝜒)) |
| 7 | 6 | con4bid 317 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvex2vw 2041 isinf 9214 isinfOLD 9215 cbvoprab123vw 36234 cbvoprab13vw 36236 cbveudavw 36246 cbvopab1davw 36259 cbvopab2davw 36260 cbvopabdavw 36261 cbvoprab1davw 36266 cbvoprab2davw 36267 cbvoprab3davw 36268 cbvoprab123davw 36269 cbvoprab12davw 36270 cbvoprab23davw 36271 cbvoprab13davw 36272 bj-gabeqis 36933 grumnud 44282 |
| Copyright terms: Public domain | W3C validator |