![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexdvaw | Structured version Visualization version GIF version |
Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva 2418 with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by Wolf Lammen, 10-Feb-2024.) |
Ref | Expression |
---|---|
cbvaldvaw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
cbvexdvaw | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvaldvaw.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
2 | 1 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒)) |
3 | 2 | cbvaldvaw 2037 | . . 3 ⊢ (𝜑 → (∀𝑥 ¬ 𝜓 ↔ ∀𝑦 ¬ 𝜒)) |
4 | alnex 1779 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
5 | alnex 1779 | . . 3 ⊢ (∀𝑦 ¬ 𝜒 ↔ ¬ ∃𝑦𝜒) | |
6 | 3, 4, 5 | 3bitr3g 313 | . 2 ⊢ (𝜑 → (¬ ∃𝑥𝜓 ↔ ¬ ∃𝑦𝜒)) |
7 | 6 | con4bid 317 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: cbvex2vw 2040 isinf 9323 isinfOLD 9324 cbvoprab123vw 36205 cbvoprab13vw 36207 cbveudavw 36217 cbvopab1davw 36230 cbvopab2davw 36231 cbvopabdavw 36232 cbvoprab1davw 36237 cbvoprab2davw 36238 cbvoprab3davw 36239 cbvoprab123davw 36240 cbvoprab12davw 36241 cbvoprab23davw 36242 cbvoprab13davw 36243 bj-gabeqis 36904 grumnud 44255 |
Copyright terms: Public domain | W3C validator |