MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexdvaw Structured version   Visualization version   GIF version

Theorem cbvexdvaw 2040
Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva 2410 with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by Wolf Lammen, 10-Feb-2024.)
Hypothesis
Ref Expression
cbvaldvaw.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvexdvaw (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvexdvaw
StepHypRef Expression
1 cbvaldvaw.1 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
21notbid 318 . . . 4 ((𝜑𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒))
32cbvaldvaw 2039 . . 3 (𝜑 → (∀𝑥 ¬ 𝜓 ↔ ∀𝑦 ¬ 𝜒))
4 alnex 1782 . . 3 (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)
5 alnex 1782 . . 3 (∀𝑦 ¬ 𝜒 ↔ ¬ ∃𝑦𝜒)
63, 4, 53bitr3g 313 . 2 (𝜑 → (¬ ∃𝑥𝜓 ↔ ¬ ∃𝑦𝜒))
76con4bid 317 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  cbvex2vw  2042  isinf  9149  cbvoprab123vw  36283  cbvoprab13vw  36285  cbveudavw  36295  cbvopab1davw  36308  cbvopab2davw  36309  cbvopabdavw  36310  cbvoprab1davw  36315  cbvoprab2davw  36316  cbvoprab3davw  36317  cbvoprab123davw  36318  cbvoprab12davw  36319  cbvoprab23davw  36320  cbvoprab13davw  36321  bj-gabeqis  36982  grumnud  44378
  Copyright terms: Public domain W3C validator