| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexdvaw | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva 2408 with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by Wolf Lammen, 10-Feb-2024.) |
| Ref | Expression |
|---|---|
| cbvaldvaw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvexdvaw | ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvaldvaw.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 3 | 2 | cbvaldvaw 2038 | . . 3 ⊢ (𝜑 → (∀𝑥 ¬ 𝜓 ↔ ∀𝑦 ¬ 𝜒)) |
| 4 | alnex 1781 | . . 3 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 5 | alnex 1781 | . . 3 ⊢ (∀𝑦 ¬ 𝜒 ↔ ¬ ∃𝑦𝜒) | |
| 6 | 3, 4, 5 | 3bitr3g 313 | . 2 ⊢ (𝜑 → (¬ ∃𝑥𝜓 ↔ ¬ ∃𝑦𝜒)) |
| 7 | 6 | con4bid 317 | 1 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvex2vw 2041 isinf 9154 cbvoprab123vw 36233 cbvoprab13vw 36235 cbveudavw 36245 cbvopab1davw 36258 cbvopab2davw 36259 cbvopabdavw 36260 cbvoprab1davw 36265 cbvoprab2davw 36266 cbvoprab3davw 36267 cbvoprab123davw 36268 cbvoprab12davw 36269 cbvoprab23davw 36270 cbvoprab13davw 36271 bj-gabeqis 36932 grumnud 44279 |
| Copyright terms: Public domain | W3C validator |