MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexdvaw Structured version   Visualization version   GIF version

Theorem cbvexdvaw 2042
Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva 2410 with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017.) (Revised by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Wolf Lammen, 10-Feb-2024.)
Hypothesis
Ref Expression
cbvaldvaw.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvexdvaw (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvexdvaw
StepHypRef Expression
1 cbvaldvaw.1 . . . . 5 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
21notbid 318 . . . 4 ((𝜑𝑥 = 𝑦) → (¬ 𝜓 ↔ ¬ 𝜒))
32cbvaldvaw 2041 . . 3 (𝜑 → (∀𝑥 ¬ 𝜓 ↔ ∀𝑦 ¬ 𝜒))
4 alnex 1784 . . 3 (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓)
5 alnex 1784 . . 3 (∀𝑦 ¬ 𝜒 ↔ ¬ ∃𝑦𝜒)
63, 4, 53bitr3g 313 . 2 (𝜑 → (¬ ∃𝑥𝜓 ↔ ¬ ∃𝑦𝜒))
76con4bid 317 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  cbvex2vw  2044  isinf  9036  bj-gabeqis  35126  grumnud  41904
  Copyright terms: Public domain W3C validator