| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvex2vw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvex2vv 2414 with more disjoint variable conditions, which requires fewer axioms . (Contributed by NM, 26-Jul-1995.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbval2vw.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvex2vw | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval2vw.1 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvexdvaw 2040 | . 2 ⊢ (𝑥 = 𝑧 → (∃𝑦𝜑 ↔ ∃𝑤𝜓)) |
| 3 | 2 | cbvexvw 2038 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: cbvex4vw 2043 cbvopabv 5164 dm0rn0 5864 cbvoprab12v 7436 cbvoprab123vw 36272 cbvoprab23vw 36273 bj-cbvex4vv 36838 funop1 47313 cycldlenngric 47958 uspgrsprf1 48177 |
| Copyright terms: Public domain | W3C validator |