Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvex2vw | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex2vv 2412 with more disjoint variable conditions, which requires fewer axioms . (Contributed by NM, 26-Jul-1995.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbval2vw.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvex2vw | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbval2vw.1 | . . 3 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvexdvaw 2040 | . 2 ⊢ (𝑥 = 𝑧 → (∃𝑦𝜑 ↔ ∃𝑤𝜓)) |
3 | 2 | cbvexvw 2038 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 |
This theorem is referenced by: cbvex4vw 2043 cbvopabv 5154 bj-cbvex4vv 35036 funop1 45019 uspgrsprf1 45553 |
Copyright terms: Public domain | W3C validator |