MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvex2vw Structured version   Visualization version   GIF version

Theorem cbvex2vw 2042
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex2vv 2412 with more disjoint variable conditions, which requires fewer axioms . (Contributed by NM, 26-Jul-1995.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypothesis
Ref Expression
cbval2vw.1 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
Assertion
Ref Expression
cbvex2vw (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
Distinct variable groups:   𝑧,𝑤,𝜑   𝑥,𝑦,𝜓   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑧,𝑤)

Proof of Theorem cbvex2vw
StepHypRef Expression
1 cbval2vw.1 . . 3 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
21cbvexdvaw 2040 . 2 (𝑥 = 𝑧 → (∃𝑦𝜑 ↔ ∃𝑤𝜓))
32cbvexvw 2038 1 (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780
This theorem is referenced by:  cbvex4vw  2043  cbvopabv  5154  bj-cbvex4vv  35036  funop1  45019  uspgrsprf1  45553
  Copyright terms: Public domain W3C validator