Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funop1 | Structured version Visualization version GIF version |
Description: A function is an ordered pair iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
funop1 | ⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq12 4803 | . . . 4 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑤) → 〈𝑥, 𝑦〉 = 〈𝑣, 𝑤〉) | |
2 | 1 | eqeq2d 2749 | . . 3 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑤) → (𝐹 = 〈𝑥, 𝑦〉 ↔ 𝐹 = 〈𝑣, 𝑤〉)) |
3 | 2 | cbvex2vw 2045 | . 2 ⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 ↔ ∃𝑣∃𝑤 𝐹 = 〈𝑣, 𝑤〉) |
4 | vex 3426 | . . . . . . 7 ⊢ 𝑣 ∈ V | |
5 | vex 3426 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
6 | 4, 5 | funopsn 7002 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐹 = 〈𝑣, 𝑤〉) → ∃𝑎(𝑣 = {𝑎} ∧ 𝐹 = {〈𝑎, 𝑎〉})) |
7 | vex 3426 | . . . . . . . . 9 ⊢ 𝑎 ∈ V | |
8 | opeq12 4803 | . . . . . . . . . . 11 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑎〉) | |
9 | 8 | sneqd 4570 | . . . . . . . . . 10 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → {〈𝑥, 𝑦〉} = {〈𝑎, 𝑎〉}) |
10 | 9 | eqeq2d 2749 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → (𝐹 = {〈𝑥, 𝑦〉} ↔ 𝐹 = {〈𝑎, 𝑎〉})) |
11 | 7, 7, 10 | spc2ev 3536 | . . . . . . . 8 ⊢ (𝐹 = {〈𝑎, 𝑎〉} → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝑣 = {𝑎} ∧ 𝐹 = {〈𝑎, 𝑎〉}) → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
13 | 12 | exlimiv 1934 | . . . . . 6 ⊢ (∃𝑎(𝑣 = {𝑎} ∧ 𝐹 = {〈𝑎, 𝑎〉}) → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
14 | 6, 13 | syl 17 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐹 = 〈𝑣, 𝑤〉) → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
15 | 14 | expcom 413 | . . . 4 ⊢ (𝐹 = 〈𝑣, 𝑤〉 → (Fun 𝐹 → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
16 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
17 | vex 3426 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
18 | 16, 17 | funsn 6471 | . . . . . 6 ⊢ Fun {〈𝑥, 𝑦〉} |
19 | funeq 6438 | . . . . . 6 ⊢ (𝐹 = {〈𝑥, 𝑦〉} → (Fun 𝐹 ↔ Fun {〈𝑥, 𝑦〉})) | |
20 | 18, 19 | mpbiri 257 | . . . . 5 ⊢ (𝐹 = {〈𝑥, 𝑦〉} → Fun 𝐹) |
21 | 20 | exlimivv 1936 | . . . 4 ⊢ (∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉} → Fun 𝐹) |
22 | 15, 21 | impbid1 224 | . . 3 ⊢ (𝐹 = 〈𝑣, 𝑤〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
23 | 22 | exlimivv 1936 | . 2 ⊢ (∃𝑣∃𝑤 𝐹 = 〈𝑣, 𝑤〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
24 | 3, 23 | sylbi 216 | 1 ⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 {csn 4558 〈cop 4564 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |