Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funop1 Structured version   Visualization version   GIF version

Theorem funop1 46291
Description: A function is an ordered pair iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Avoid depending on this detail.)
Assertion
Ref Expression
funop1 (∃𝑥𝑦 𝐹 = ⟨𝑥, 𝑦⟩ → (Fun 𝐹 ↔ ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩}))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem funop1
Dummy variables 𝑎 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq12 4876 . . . 4 ((𝑥 = 𝑣𝑦 = 𝑤) → ⟨𝑥, 𝑦⟩ = ⟨𝑣, 𝑤⟩)
21eqeq2d 2741 . . 3 ((𝑥 = 𝑣𝑦 = 𝑤) → (𝐹 = ⟨𝑥, 𝑦⟩ ↔ 𝐹 = ⟨𝑣, 𝑤⟩))
32cbvex2vw 2042 . 2 (∃𝑥𝑦 𝐹 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑣𝑤 𝐹 = ⟨𝑣, 𝑤⟩)
4 vex 3476 . . . . . . 7 𝑣 ∈ V
5 vex 3476 . . . . . . 7 𝑤 ∈ V
64, 5funopsn 7149 . . . . . 6 ((Fun 𝐹𝐹 = ⟨𝑣, 𝑤⟩) → ∃𝑎(𝑣 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}))
7 vex 3476 . . . . . . . . 9 𝑎 ∈ V
8 opeq12 4876 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑎) → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑎⟩)
98sneqd 4641 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑎) → {⟨𝑥, 𝑦⟩} = {⟨𝑎, 𝑎⟩})
109eqeq2d 2741 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐹 = {⟨𝑥, 𝑦⟩} ↔ 𝐹 = {⟨𝑎, 𝑎⟩}))
117, 7, 10spc2ev 3598 . . . . . . . 8 (𝐹 = {⟨𝑎, 𝑎⟩} → ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩})
1211adantl 480 . . . . . . 7 ((𝑣 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}) → ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩})
1312exlimiv 1931 . . . . . 6 (∃𝑎(𝑣 = {𝑎} ∧ 𝐹 = {⟨𝑎, 𝑎⟩}) → ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩})
146, 13syl 17 . . . . 5 ((Fun 𝐹𝐹 = ⟨𝑣, 𝑤⟩) → ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩})
1514expcom 412 . . . 4 (𝐹 = ⟨𝑣, 𝑤⟩ → (Fun 𝐹 → ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩}))
16 vex 3476 . . . . . . 7 𝑥 ∈ V
17 vex 3476 . . . . . . 7 𝑦 ∈ V
1816, 17funsn 6602 . . . . . 6 Fun {⟨𝑥, 𝑦⟩}
19 funeq 6569 . . . . . 6 (𝐹 = {⟨𝑥, 𝑦⟩} → (Fun 𝐹 ↔ Fun {⟨𝑥, 𝑦⟩}))
2018, 19mpbiri 257 . . . . 5 (𝐹 = {⟨𝑥, 𝑦⟩} → Fun 𝐹)
2120exlimivv 1933 . . . 4 (∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩} → Fun 𝐹)
2215, 21impbid1 224 . . 3 (𝐹 = ⟨𝑣, 𝑤⟩ → (Fun 𝐹 ↔ ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩}))
2322exlimivv 1933 . 2 (∃𝑣𝑤 𝐹 = ⟨𝑣, 𝑤⟩ → (Fun 𝐹 ↔ ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩}))
243, 23sylbi 216 1 (∃𝑥𝑦 𝐹 = ⟨𝑥, 𝑦⟩ → (Fun 𝐹 ↔ ∃𝑥𝑦 𝐹 = {⟨𝑥, 𝑦⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wex 1779  {csn 4629  cop 4635  Fun wfun 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator