| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funop1 | Structured version Visualization version GIF version | ||
| Description: A function is an ordered pair iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| funop1 | ⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq12 4851 | . . . 4 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑤) → 〈𝑥, 𝑦〉 = 〈𝑣, 𝑤〉) | |
| 2 | 1 | eqeq2d 2746 | . . 3 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑤) → (𝐹 = 〈𝑥, 𝑦〉 ↔ 𝐹 = 〈𝑣, 𝑤〉)) |
| 3 | 2 | cbvex2vw 2040 | . 2 ⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 ↔ ∃𝑣∃𝑤 𝐹 = 〈𝑣, 𝑤〉) |
| 4 | vex 3463 | . . . . . . 7 ⊢ 𝑣 ∈ V | |
| 5 | vex 3463 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
| 6 | 4, 5 | funopsn 7137 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐹 = 〈𝑣, 𝑤〉) → ∃𝑎(𝑣 = {𝑎} ∧ 𝐹 = {〈𝑎, 𝑎〉})) |
| 7 | vex 3463 | . . . . . . . . 9 ⊢ 𝑎 ∈ V | |
| 8 | opeq12 4851 | . . . . . . . . . . 11 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑎〉) | |
| 9 | 8 | sneqd 4613 | . . . . . . . . . 10 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → {〈𝑥, 𝑦〉} = {〈𝑎, 𝑎〉}) |
| 10 | 9 | eqeq2d 2746 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → (𝐹 = {〈𝑥, 𝑦〉} ↔ 𝐹 = {〈𝑎, 𝑎〉})) |
| 11 | 7, 7, 10 | spc2ev 3586 | . . . . . . . 8 ⊢ (𝐹 = {〈𝑎, 𝑎〉} → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝑣 = {𝑎} ∧ 𝐹 = {〈𝑎, 𝑎〉}) → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
| 13 | 12 | exlimiv 1930 | . . . . . 6 ⊢ (∃𝑎(𝑣 = {𝑎} ∧ 𝐹 = {〈𝑎, 𝑎〉}) → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
| 14 | 6, 13 | syl 17 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐹 = 〈𝑣, 𝑤〉) → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
| 15 | 14 | expcom 413 | . . . 4 ⊢ (𝐹 = 〈𝑣, 𝑤〉 → (Fun 𝐹 → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
| 16 | vex 3463 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 17 | vex 3463 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 18 | 16, 17 | funsn 6588 | . . . . . 6 ⊢ Fun {〈𝑥, 𝑦〉} |
| 19 | funeq 6555 | . . . . . 6 ⊢ (𝐹 = {〈𝑥, 𝑦〉} → (Fun 𝐹 ↔ Fun {〈𝑥, 𝑦〉})) | |
| 20 | 18, 19 | mpbiri 258 | . . . . 5 ⊢ (𝐹 = {〈𝑥, 𝑦〉} → Fun 𝐹) |
| 21 | 20 | exlimivv 1932 | . . . 4 ⊢ (∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉} → Fun 𝐹) |
| 22 | 15, 21 | impbid1 225 | . . 3 ⊢ (𝐹 = 〈𝑣, 𝑤〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
| 23 | 22 | exlimivv 1932 | . 2 ⊢ (∃𝑣∃𝑤 𝐹 = 〈𝑣, 𝑤〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
| 24 | 3, 23 | sylbi 217 | 1 ⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 {csn 4601 〈cop 4607 Fun wfun 6524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |