![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funop1 | Structured version Visualization version GIF version |
Description: A function is an ordered pair iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
funop1 | ⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq12 4899 | . . . 4 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑤) → 〈𝑥, 𝑦〉 = 〈𝑣, 𝑤〉) | |
2 | 1 | eqeq2d 2751 | . . 3 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑤) → (𝐹 = 〈𝑥, 𝑦〉 ↔ 𝐹 = 〈𝑣, 𝑤〉)) |
3 | 2 | cbvex2vw 2040 | . 2 ⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 ↔ ∃𝑣∃𝑤 𝐹 = 〈𝑣, 𝑤〉) |
4 | vex 3492 | . . . . . . 7 ⊢ 𝑣 ∈ V | |
5 | vex 3492 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
6 | 4, 5 | funopsn 7182 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝐹 = 〈𝑣, 𝑤〉) → ∃𝑎(𝑣 = {𝑎} ∧ 𝐹 = {〈𝑎, 𝑎〉})) |
7 | vex 3492 | . . . . . . . . 9 ⊢ 𝑎 ∈ V | |
8 | opeq12 4899 | . . . . . . . . . . 11 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑎〉) | |
9 | 8 | sneqd 4660 | . . . . . . . . . 10 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → {〈𝑥, 𝑦〉} = {〈𝑎, 𝑎〉}) |
10 | 9 | eqeq2d 2751 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑎) → (𝐹 = {〈𝑥, 𝑦〉} ↔ 𝐹 = {〈𝑎, 𝑎〉})) |
11 | 7, 7, 10 | spc2ev 3620 | . . . . . . . 8 ⊢ (𝐹 = {〈𝑎, 𝑎〉} → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝑣 = {𝑎} ∧ 𝐹 = {〈𝑎, 𝑎〉}) → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
13 | 12 | exlimiv 1929 | . . . . . 6 ⊢ (∃𝑎(𝑣 = {𝑎} ∧ 𝐹 = {〈𝑎, 𝑎〉}) → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
14 | 6, 13 | syl 17 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐹 = 〈𝑣, 𝑤〉) → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉}) |
15 | 14 | expcom 413 | . . . 4 ⊢ (𝐹 = 〈𝑣, 𝑤〉 → (Fun 𝐹 → ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
16 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
17 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
18 | 16, 17 | funsn 6631 | . . . . . 6 ⊢ Fun {〈𝑥, 𝑦〉} |
19 | funeq 6598 | . . . . . 6 ⊢ (𝐹 = {〈𝑥, 𝑦〉} → (Fun 𝐹 ↔ Fun {〈𝑥, 𝑦〉})) | |
20 | 18, 19 | mpbiri 258 | . . . . 5 ⊢ (𝐹 = {〈𝑥, 𝑦〉} → Fun 𝐹) |
21 | 20 | exlimivv 1931 | . . . 4 ⊢ (∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉} → Fun 𝐹) |
22 | 15, 21 | impbid1 225 | . . 3 ⊢ (𝐹 = 〈𝑣, 𝑤〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
23 | 22 | exlimivv 1931 | . 2 ⊢ (∃𝑣∃𝑤 𝐹 = 〈𝑣, 𝑤〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
24 | 3, 23 | sylbi 217 | 1 ⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 {csn 4648 〈cop 4654 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |