| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvopabv | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| cbvopabv.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvopabv | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq12 4856 | . . . . . 6 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉) | |
| 2 | 1 | eqeq2d 2747 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = 〈𝑥, 𝑦〉 ↔ 𝑣 = 〈𝑧, 𝑤〉)) |
| 3 | cbvopabv.1 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | anbi12d 632 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓))) |
| 5 | 4 | cbvex2vw 2041 | . . 3 ⊢ (∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)) |
| 6 | 5 | abbii 2803 | . 2 ⊢ {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)} |
| 7 | df-opab 5187 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 8 | df-opab 5187 | . 2 ⊢ {〈𝑧, 𝑤〉 ∣ 𝜓} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)} | |
| 9 | 6, 7, 8 | 3eqtr4i 2769 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2714 〈cop 4612 {copab 5186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 |
| This theorem is referenced by: cantnf 9712 infxpen 10033 axdc2 10468 fpwwe2cbv 10649 fpwwecbv 10663 sylow1 19589 bcth 25286 vitali 25571 lgsquadlem3 27350 lgsquad 27351 islnopp 28723 ishpg 28743 hpgbr 28744 trgcopy 28788 trgcopyeu 28790 acopyeu 28818 tgasa1 28842 axcontlem1 28948 constrext2chn 33798 eulerpartlemgvv 34413 eulerpart 34419 cvmlift2lem13 35342 pellex 42825 aomclem8 43052 sprsymrelf 47476 |
| Copyright terms: Public domain | W3C validator |