MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopabv Structured version   Visualization version   GIF version

Theorem cbvopabv 5175
Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.)
Hypothesis
Ref Expression
cbvopabv.1 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
Assertion
Ref Expression
cbvopabv {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝜑,𝑧,𝑤   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑧,𝑤)

Proof of Theorem cbvopabv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 opeq12 4835 . . . . . 6 ((𝑥 = 𝑧𝑦 = 𝑤) → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩)
21eqeq2d 2740 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑣 = ⟨𝑥, 𝑦⟩ ↔ 𝑣 = ⟨𝑧, 𝑤⟩))
3 cbvopabv.1 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
42, 3anbi12d 632 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)))
54cbvex2vw 2041 . . 3 (∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓))
65abbii 2796 . 2 {𝑣 ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)}
7 df-opab 5165 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
8 df-opab 5165 . 2 {⟨𝑧, 𝑤⟩ ∣ 𝜓} = {𝑣 ∣ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)}
96, 7, 83eqtr4i 2762 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  {cab 2707  cop 4591  {copab 5164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165
This theorem is referenced by:  cantnf  9622  infxpen  9943  axdc2  10378  fpwwe2cbv  10559  fpwwecbv  10573  sylow1  19517  bcth  25262  vitali  25547  lgsquadlem3  27326  lgsquad  27327  islnopp  28719  ishpg  28739  hpgbr  28740  trgcopy  28784  trgcopyeu  28786  acopyeu  28814  tgasa1  28838  axcontlem1  28944  constrext2chn  33742  eulerpartlemgvv  34360  eulerpart  34366  cvmlift2lem13  35295  pellex  42816  aomclem8  43043  sprsymrelf  47489
  Copyright terms: Public domain W3C validator