![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvopabv | Structured version Visualization version GIF version |
Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
cbvopabv.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvopabv | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq12 4875 | . . . . . 6 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩) | |
2 | 1 | eqeq2d 2743 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = ⟨𝑥, 𝑦⟩ ↔ 𝑣 = ⟨𝑧, 𝑤⟩)) |
3 | cbvopabv.1 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | anbi12d 631 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓))) |
5 | 4 | cbvex2vw 2044 | . . 3 ⊢ (∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧∃𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)) |
6 | 5 | abbii 2802 | . 2 ⊢ {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)} |
7 | df-opab 5211 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
8 | df-opab 5211 | . 2 ⊢ {⟨𝑧, 𝑤⟩ ∣ 𝜓} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)} | |
9 | 6, 7, 8 | 3eqtr4i 2770 | 1 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 {cab 2709 ⟨cop 4634 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 |
This theorem is referenced by: cantnf 9690 infxpen 10011 axdc2 10446 fpwwe2cbv 10627 fpwwecbv 10641 sylow1 19473 bcth 24853 vitali 25137 lgsquadlem3 26892 lgsquad 26893 islnopp 28028 ishpg 28048 hpgbr 28049 trgcopy 28093 trgcopyeu 28095 acopyeu 28123 tgasa1 28147 axcontlem1 28260 eulerpartlemgvv 33444 eulerpart 33450 cvmlift2lem13 34375 pellex 41655 aomclem8 41885 sprsymrelf 46242 |
Copyright terms: Public domain | W3C validator |