MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopabv Structured version   Visualization version   GIF version

Theorem cbvopabv 5215
Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.)
Hypothesis
Ref Expression
cbvopabv.1 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
Assertion
Ref Expression
cbvopabv {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝜑,𝑧,𝑤   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑧,𝑤)

Proof of Theorem cbvopabv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 opeq12 4874 . . . . . 6 ((𝑥 = 𝑧𝑦 = 𝑤) → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩)
21eqeq2d 2747 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑣 = ⟨𝑥, 𝑦⟩ ↔ 𝑣 = ⟨𝑧, 𝑤⟩))
3 cbvopabv.1 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
42, 3anbi12d 632 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)))
54cbvex2vw 2039 . . 3 (∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓))
65abbii 2808 . 2 {𝑣 ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)}
7 df-opab 5205 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
8 df-opab 5205 . 2 {⟨𝑧, 𝑤⟩ ∣ 𝜓} = {𝑣 ∣ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)}
96, 7, 83eqtr4i 2774 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  {cab 2713  cop 4631  {copab 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-opab 5205
This theorem is referenced by:  cantnf  9734  infxpen  10055  axdc2  10490  fpwwe2cbv  10671  fpwwecbv  10685  sylow1  19622  bcth  25364  vitali  25649  lgsquadlem3  27427  lgsquad  27428  islnopp  28748  ishpg  28768  hpgbr  28769  trgcopy  28813  trgcopyeu  28815  acopyeu  28843  tgasa1  28867  axcontlem1  28980  eulerpartlemgvv  34379  eulerpart  34385  cvmlift2lem13  35321  pellex  42851  aomclem8  43078  sprsymrelf  47487
  Copyright terms: Public domain W3C validator