| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvopabv | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| cbvopabv.1 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvopabv | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq12 4835 | . . . . . 6 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑤〉) | |
| 2 | 1 | eqeq2d 2740 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑣 = 〈𝑥, 𝑦〉 ↔ 𝑣 = 〈𝑧, 𝑤〉)) |
| 3 | cbvopabv.1 | . . . . 5 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | anbi12d 632 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓))) |
| 5 | 4 | cbvex2vw 2041 | . . 3 ⊢ (∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)) |
| 6 | 5 | abbii 2796 | . 2 ⊢ {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)} |
| 7 | df-opab 5165 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑣 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 8 | df-opab 5165 | . 2 ⊢ {〈𝑧, 𝑤〉 ∣ 𝜓} = {𝑣 ∣ ∃𝑧∃𝑤(𝑣 = 〈𝑧, 𝑤〉 ∧ 𝜓)} | |
| 9 | 6, 7, 8 | 3eqtr4i 2762 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑤〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2707 〈cop 4591 {copab 5164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-opab 5165 |
| This theorem is referenced by: cantnf 9622 infxpen 9943 axdc2 10378 fpwwe2cbv 10559 fpwwecbv 10573 sylow1 19517 bcth 25262 vitali 25547 lgsquadlem3 27326 lgsquad 27327 islnopp 28719 ishpg 28739 hpgbr 28740 trgcopy 28784 trgcopyeu 28786 acopyeu 28814 tgasa1 28838 axcontlem1 28944 constrext2chn 33742 eulerpartlemgvv 34360 eulerpart 34366 cvmlift2lem13 35295 pellex 42816 aomclem8 43043 sprsymrelf 47489 |
| Copyright terms: Public domain | W3C validator |