MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopabv Structured version   Visualization version   GIF version

Theorem cbvopabv 5154
Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.)
Hypothesis
Ref Expression
cbvopabv.1 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
Assertion
Ref Expression
cbvopabv {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝜑,𝑧,𝑤   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑧,𝑤)

Proof of Theorem cbvopabv
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 opeq12 4811 . . . . . 6 ((𝑥 = 𝑧𝑦 = 𝑤) → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑤⟩)
21eqeq2d 2747 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑣 = ⟨𝑥, 𝑦⟩ ↔ 𝑣 = ⟨𝑧, 𝑤⟩))
3 cbvopabv.1 . . . . 5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
42, 3anbi12d 632 . . . 4 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)))
54cbvex2vw 2042 . . 3 (∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓))
65abbii 2806 . 2 {𝑣 ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑣 ∣ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)}
7 df-opab 5144 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑣 ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
8 df-opab 5144 . 2 {⟨𝑧, 𝑤⟩ ∣ 𝜓} = {𝑣 ∣ ∃𝑧𝑤(𝑣 = ⟨𝑧, 𝑤⟩ ∧ 𝜓)}
96, 7, 83eqtr4i 2774 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wex 1779  {cab 2713  cop 4571  {copab 5143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-opab 5144
This theorem is referenced by:  cantnf  9495  infxpen  9816  axdc2  10251  fpwwe2cbv  10432  fpwwecbv  10446  sylow1  19253  bcth  24538  vitali  24822  lgsquadlem3  26575  lgsquad  26576  islnopp  27145  ishpg  27165  hpgbr  27166  trgcopy  27210  trgcopyeu  27212  acopyeu  27240  tgasa1  27264  axcontlem1  27377  eulerpartlemgvv  32388  eulerpart  32394  cvmlift2lem13  33322  pellex  40694  aomclem8  40924  sprsymrelf  45005
  Copyright terms: Public domain W3C validator