Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprf1 Structured version   Visualization version   GIF version

Theorem uspgrsprf1 46824
Description: The mapping 𝐹 is a one-to-one function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprf1 𝐹:𝐺1-1𝑃
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)

Proof of Theorem uspgrsprf1
Dummy variables 𝑎 𝑏 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrsprf.p . . 3 𝑃 = 𝒫 (Pairs‘𝑉)
2 uspgrsprf.g . . 3 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
3 uspgrsprf.f . . 3 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
41, 2, 3uspgrsprf 46823 . 2 𝐹:𝐺𝑃
51, 2, 3uspgrsprfv 46822 . . . . 5 (𝑎𝐺 → (𝐹𝑎) = (2nd𝑎))
61, 2, 3uspgrsprfv 46822 . . . . 5 (𝑏𝐺 → (𝐹𝑏) = (2nd𝑏))
75, 6eqeqan12d 2745 . . . 4 ((𝑎𝐺𝑏𝐺) → ((𝐹𝑎) = (𝐹𝑏) ↔ (2nd𝑎) = (2nd𝑏)))
82eleq2i 2824 . . . . . 6 (𝑎𝐺𝑎 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
9 elopab 5527 . . . . . 6 (𝑎 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ ∃𝑣𝑒(𝑎 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
10 opeq12 4875 . . . . . . . . 9 ((𝑣 = 𝑤𝑒 = 𝑓) → ⟨𝑣, 𝑒⟩ = ⟨𝑤, 𝑓⟩)
1110eqeq2d 2742 . . . . . . . 8 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑎 = ⟨𝑣, 𝑒⟩ ↔ 𝑎 = ⟨𝑤, 𝑓⟩))
12 eqeq1 2735 . . . . . . . . . 10 (𝑣 = 𝑤 → (𝑣 = 𝑉𝑤 = 𝑉))
1312adantr 480 . . . . . . . . 9 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑣 = 𝑉𝑤 = 𝑉))
14 eqeq2 2743 . . . . . . . . . . 11 (𝑣 = 𝑤 → ((Vtx‘𝑞) = 𝑣 ↔ (Vtx‘𝑞) = 𝑤))
15 eqeq2 2743 . . . . . . . . . . 11 (𝑒 = 𝑓 → ((Edg‘𝑞) = 𝑒 ↔ (Edg‘𝑞) = 𝑓))
1614, 15bi2anan9 636 . . . . . . . . . 10 ((𝑣 = 𝑤𝑒 = 𝑓) → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))
1716rexbidv 3177 . . . . . . . . 9 ((𝑣 = 𝑤𝑒 = 𝑓) → (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))
1813, 17anbi12d 630 . . . . . . . 8 ((𝑣 = 𝑤𝑒 = 𝑓) → ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) ↔ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))))
1911, 18anbi12d 630 . . . . . . 7 ((𝑣 = 𝑤𝑒 = 𝑓) → ((𝑎 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ↔ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))))
2019cbvex2vw 2043 . . . . . 6 (∃𝑣𝑒(𝑎 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ↔ ∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))))
218, 9, 203bitri 297 . . . . 5 (𝑎𝐺 ↔ ∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))))
222eleq2i 2824 . . . . . 6 (𝑏𝐺𝑏 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
23 elopab 5527 . . . . . 6 (𝑏 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ ∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
2422, 23bitri 275 . . . . 5 (𝑏𝐺 ↔ ∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
25 eqeq2 2743 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑉 → (𝑣 = 𝑤𝑣 = 𝑉))
26 opeq12 4875 . . . . . . . . . . . . . . . . . 18 ((𝑤 = 𝑣𝑓 = 𝑒) → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)
2726ex 412 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
2827equcoms 2022 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
2925, 28syl6bir 254 . . . . . . . . . . . . . . 15 (𝑤 = 𝑉 → (𝑣 = 𝑉 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3029ad2antrl 725 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑣 = 𝑉 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3130com12 32 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3231ad2antrl 725 . . . . . . . . . . . 12 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3332imp 406 . . . . . . . . . . 11 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
34 vex 3477 . . . . . . . . . . . . . 14 𝑤 ∈ V
35 vex 3477 . . . . . . . . . . . . . 14 𝑓 ∈ V
3634, 35op2ndd 7990 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑤, 𝑓⟩ → (2nd𝑎) = 𝑓)
3736ad2antrl 725 . . . . . . . . . . . 12 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (2nd𝑎) = 𝑓)
38 vex 3477 . . . . . . . . . . . . . . 15 𝑣 ∈ V
39 vex 3477 . . . . . . . . . . . . . . 15 𝑒 ∈ V
4038, 39op2ndd 7990 . . . . . . . . . . . . . 14 (𝑏 = ⟨𝑣, 𝑒⟩ → (2nd𝑏) = 𝑒)
4140adantr 480 . . . . . . . . . . . . 13 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑏) = 𝑒)
4241adantr 480 . . . . . . . . . . . 12 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (2nd𝑏) = 𝑒)
4337, 42eqeq12d 2747 . . . . . . . . . . 11 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → ((2nd𝑎) = (2nd𝑏) ↔ 𝑓 = 𝑒))
44 eqeq12 2748 . . . . . . . . . . . . . . . 16 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ 𝑏 = ⟨𝑣, 𝑒⟩) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
4544ex 412 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑤, 𝑓⟩ → (𝑏 = ⟨𝑣, 𝑒⟩ → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4645adantr 480 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑏 = ⟨𝑣, 𝑒⟩ → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4746com12 32 . . . . . . . . . . . . 13 (𝑏 = ⟨𝑣, 𝑒⟩ → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4847adantr 480 . . . . . . . . . . . 12 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4948imp 406 . . . . . . . . . . 11 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
5033, 43, 493imtr4d 294 . . . . . . . . . 10 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏))
5150ex 412 . . . . . . . . 9 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5251exlimivv 1934 . . . . . . . 8 (∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5352com12 32 . . . . . . 7 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5453exlimivv 1934 . . . . . 6 (∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5554imp 406 . . . . 5 ((∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) ∧ ∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏))
5621, 24, 55syl2anb 597 . . . 4 ((𝑎𝐺𝑏𝐺) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏))
577, 56sylbid 239 . . 3 ((𝑎𝐺𝑏𝐺) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
5857rgen2 3196 . 2 𝑎𝐺𝑏𝐺 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)
59 dff13 7257 . 2 (𝐹:𝐺1-1𝑃 ↔ (𝐹:𝐺𝑃 ∧ ∀𝑎𝐺𝑏𝐺 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
604, 58, 59mpbir2an 708 1 𝐹:𝐺1-1𝑃
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wex 1780  wcel 2105  wral 3060  wrex 3069  𝒫 cpw 4602  cop 4634  {copab 5210  cmpt 5231  wf 6539  1-1wf1 6540  cfv 6543  2nd c2nd 7978  Vtxcvtx 28524  Edgcedg 28575  USPGraphcuspgr 28676  Pairscspr 46444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-oadd 8474  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-dju 9900  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-fz 13490  df-hash 14296  df-edg 28576  df-upgr 28610  df-uspgr 28678  df-spr 46445
This theorem is referenced by:  uspgrsprf1o  46826
  Copyright terms: Public domain W3C validator