Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprf1 Structured version   Visualization version   GIF version

Theorem uspgrsprf1 48257
Description: The mapping 𝐹 is a one-to-one function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprf1 𝐹:𝐺1-1𝑃
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)

Proof of Theorem uspgrsprf1
Dummy variables 𝑎 𝑏 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrsprf.p . . 3 𝑃 = 𝒫 (Pairs‘𝑉)
2 uspgrsprf.g . . 3 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
3 uspgrsprf.f . . 3 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
41, 2, 3uspgrsprf 48256 . 2 𝐹:𝐺𝑃
51, 2, 3uspgrsprfv 48255 . . . . 5 (𝑎𝐺 → (𝐹𝑎) = (2nd𝑎))
61, 2, 3uspgrsprfv 48255 . . . . 5 (𝑏𝐺 → (𝐹𝑏) = (2nd𝑏))
75, 6eqeqan12d 2745 . . . 4 ((𝑎𝐺𝑏𝐺) → ((𝐹𝑎) = (𝐹𝑏) ↔ (2nd𝑎) = (2nd𝑏)))
82eleq2i 2823 . . . . . 6 (𝑎𝐺𝑎 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
9 elopab 5465 . . . . . 6 (𝑎 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ ∃𝑣𝑒(𝑎 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
10 opeq12 4824 . . . . . . . . 9 ((𝑣 = 𝑤𝑒 = 𝑓) → ⟨𝑣, 𝑒⟩ = ⟨𝑤, 𝑓⟩)
1110eqeq2d 2742 . . . . . . . 8 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑎 = ⟨𝑣, 𝑒⟩ ↔ 𝑎 = ⟨𝑤, 𝑓⟩))
12 eqeq1 2735 . . . . . . . . . 10 (𝑣 = 𝑤 → (𝑣 = 𝑉𝑤 = 𝑉))
1312adantr 480 . . . . . . . . 9 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑣 = 𝑉𝑤 = 𝑉))
14 eqeq2 2743 . . . . . . . . . . 11 (𝑣 = 𝑤 → ((Vtx‘𝑞) = 𝑣 ↔ (Vtx‘𝑞) = 𝑤))
15 eqeq2 2743 . . . . . . . . . . 11 (𝑒 = 𝑓 → ((Edg‘𝑞) = 𝑒 ↔ (Edg‘𝑞) = 𝑓))
1614, 15bi2anan9 638 . . . . . . . . . 10 ((𝑣 = 𝑤𝑒 = 𝑓) → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))
1716rexbidv 3156 . . . . . . . . 9 ((𝑣 = 𝑤𝑒 = 𝑓) → (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))
1813, 17anbi12d 632 . . . . . . . 8 ((𝑣 = 𝑤𝑒 = 𝑓) → ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) ↔ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))))
1911, 18anbi12d 632 . . . . . . 7 ((𝑣 = 𝑤𝑒 = 𝑓) → ((𝑎 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ↔ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))))
2019cbvex2vw 2042 . . . . . 6 (∃𝑣𝑒(𝑎 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ↔ ∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))))
218, 9, 203bitri 297 . . . . 5 (𝑎𝐺 ↔ ∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))))
222eleq2i 2823 . . . . . 6 (𝑏𝐺𝑏 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
23 elopab 5465 . . . . . 6 (𝑏 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ ∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
2422, 23bitri 275 . . . . 5 (𝑏𝐺 ↔ ∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
25 eqeq2 2743 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑉 → (𝑣 = 𝑤𝑣 = 𝑉))
26 opeq12 4824 . . . . . . . . . . . . . . . . . 18 ((𝑤 = 𝑣𝑓 = 𝑒) → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)
2726ex 412 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
2827equcoms 2021 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
2925, 28biimtrrdi 254 . . . . . . . . . . . . . . 15 (𝑤 = 𝑉 → (𝑣 = 𝑉 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3029ad2antrl 728 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑣 = 𝑉 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3130com12 32 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3231ad2antrl 728 . . . . . . . . . . . 12 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3332imp 406 . . . . . . . . . . 11 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
34 vex 3440 . . . . . . . . . . . . . 14 𝑤 ∈ V
35 vex 3440 . . . . . . . . . . . . . 14 𝑓 ∈ V
3634, 35op2ndd 7932 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑤, 𝑓⟩ → (2nd𝑎) = 𝑓)
3736ad2antrl 728 . . . . . . . . . . . 12 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (2nd𝑎) = 𝑓)
38 vex 3440 . . . . . . . . . . . . . . 15 𝑣 ∈ V
39 vex 3440 . . . . . . . . . . . . . . 15 𝑒 ∈ V
4038, 39op2ndd 7932 . . . . . . . . . . . . . 14 (𝑏 = ⟨𝑣, 𝑒⟩ → (2nd𝑏) = 𝑒)
4140adantr 480 . . . . . . . . . . . . 13 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑏) = 𝑒)
4241adantr 480 . . . . . . . . . . . 12 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (2nd𝑏) = 𝑒)
4337, 42eqeq12d 2747 . . . . . . . . . . 11 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → ((2nd𝑎) = (2nd𝑏) ↔ 𝑓 = 𝑒))
44 eqeq12 2748 . . . . . . . . . . . . . . . 16 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ 𝑏 = ⟨𝑣, 𝑒⟩) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
4544ex 412 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑤, 𝑓⟩ → (𝑏 = ⟨𝑣, 𝑒⟩ → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4645adantr 480 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑏 = ⟨𝑣, 𝑒⟩ → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4746com12 32 . . . . . . . . . . . . 13 (𝑏 = ⟨𝑣, 𝑒⟩ → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4847adantr 480 . . . . . . . . . . . 12 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4948imp 406 . . . . . . . . . . 11 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
5033, 43, 493imtr4d 294 . . . . . . . . . 10 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏))
5150ex 412 . . . . . . . . 9 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5251exlimivv 1933 . . . . . . . 8 (∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5352com12 32 . . . . . . 7 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5453exlimivv 1933 . . . . . 6 (∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5554imp 406 . . . . 5 ((∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) ∧ ∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏))
5621, 24, 55syl2anb 598 . . . 4 ((𝑎𝐺𝑏𝐺) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏))
577, 56sylbid 240 . . 3 ((𝑎𝐺𝑏𝐺) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
5857rgen2 3172 . 2 𝑎𝐺𝑏𝐺 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)
59 dff13 7188 . 2 (𝐹:𝐺1-1𝑃 ↔ (𝐹:𝐺𝑃 ∧ ∀𝑎𝐺𝑏𝐺 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
604, 58, 59mpbir2an 711 1 𝐹:𝐺1-1𝑃
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  𝒫 cpw 4547  cop 4579  {copab 5151  cmpt 5170  wf 6477  1-1wf1 6478  cfv 6481  2nd c2nd 7920  Vtxcvtx 28974  Edgcedg 29025  USPGraphcuspgr 29126  Pairscspr 47587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-edg 29026  df-upgr 29060  df-uspgr 29128  df-spr 47588
This theorem is referenced by:  uspgrsprf1o  48259
  Copyright terms: Public domain W3C validator