Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprf1 Structured version   Visualization version   GIF version

Theorem uspgrsprf1 47991
Description: The mapping 𝐹 is a one-to-one function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprf1 𝐹:𝐺1-1𝑃
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)

Proof of Theorem uspgrsprf1
Dummy variables 𝑎 𝑏 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrsprf.p . . 3 𝑃 = 𝒫 (Pairs‘𝑉)
2 uspgrsprf.g . . 3 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
3 uspgrsprf.f . . 3 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
41, 2, 3uspgrsprf 47990 . 2 𝐹:𝐺𝑃
51, 2, 3uspgrsprfv 47989 . . . . 5 (𝑎𝐺 → (𝐹𝑎) = (2nd𝑎))
61, 2, 3uspgrsprfv 47989 . . . . 5 (𝑏𝐺 → (𝐹𝑏) = (2nd𝑏))
75, 6eqeqan12d 2749 . . . 4 ((𝑎𝐺𝑏𝐺) → ((𝐹𝑎) = (𝐹𝑏) ↔ (2nd𝑎) = (2nd𝑏)))
82eleq2i 2831 . . . . . 6 (𝑎𝐺𝑎 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
9 elopab 5537 . . . . . 6 (𝑎 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ ∃𝑣𝑒(𝑎 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
10 opeq12 4880 . . . . . . . . 9 ((𝑣 = 𝑤𝑒 = 𝑓) → ⟨𝑣, 𝑒⟩ = ⟨𝑤, 𝑓⟩)
1110eqeq2d 2746 . . . . . . . 8 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑎 = ⟨𝑣, 𝑒⟩ ↔ 𝑎 = ⟨𝑤, 𝑓⟩))
12 eqeq1 2739 . . . . . . . . . 10 (𝑣 = 𝑤 → (𝑣 = 𝑉𝑤 = 𝑉))
1312adantr 480 . . . . . . . . 9 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑣 = 𝑉𝑤 = 𝑉))
14 eqeq2 2747 . . . . . . . . . . 11 (𝑣 = 𝑤 → ((Vtx‘𝑞) = 𝑣 ↔ (Vtx‘𝑞) = 𝑤))
15 eqeq2 2747 . . . . . . . . . . 11 (𝑒 = 𝑓 → ((Edg‘𝑞) = 𝑒 ↔ (Edg‘𝑞) = 𝑓))
1614, 15bi2anan9 638 . . . . . . . . . 10 ((𝑣 = 𝑤𝑒 = 𝑓) → (((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))
1716rexbidv 3177 . . . . . . . . 9 ((𝑣 = 𝑤𝑒 = 𝑓) → (∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒) ↔ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))
1813, 17anbi12d 632 . . . . . . . 8 ((𝑣 = 𝑤𝑒 = 𝑓) → ((𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)) ↔ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))))
1911, 18anbi12d 632 . . . . . . 7 ((𝑣 = 𝑤𝑒 = 𝑓) → ((𝑎 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ↔ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))))
2019cbvex2vw 2038 . . . . . 6 (∃𝑣𝑒(𝑎 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ↔ ∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))))
218, 9, 203bitri 297 . . . . 5 (𝑎𝐺 ↔ ∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))))
222eleq2i 2831 . . . . . 6 (𝑏𝐺𝑏 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))})
23 elopab 5537 . . . . . 6 (𝑏 ∈ {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ↔ ∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
2422, 23bitri 275 . . . . 5 (𝑏𝐺 ↔ ∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))))
25 eqeq2 2747 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑉 → (𝑣 = 𝑤𝑣 = 𝑉))
26 opeq12 4880 . . . . . . . . . . . . . . . . . 18 ((𝑤 = 𝑣𝑓 = 𝑒) → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)
2726ex 412 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑣 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
2827equcoms 2017 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
2925, 28biimtrrdi 254 . . . . . . . . . . . . . . 15 (𝑤 = 𝑉 → (𝑣 = 𝑉 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3029ad2antrl 728 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑣 = 𝑉 → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3130com12 32 . . . . . . . . . . . . 13 (𝑣 = 𝑉 → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3231ad2antrl 728 . . . . . . . . . . . 12 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
3332imp 406 . . . . . . . . . . 11 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (𝑓 = 𝑒 → ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
34 vex 3482 . . . . . . . . . . . . . 14 𝑤 ∈ V
35 vex 3482 . . . . . . . . . . . . . 14 𝑓 ∈ V
3634, 35op2ndd 8024 . . . . . . . . . . . . 13 (𝑎 = ⟨𝑤, 𝑓⟩ → (2nd𝑎) = 𝑓)
3736ad2antrl 728 . . . . . . . . . . . 12 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (2nd𝑎) = 𝑓)
38 vex 3482 . . . . . . . . . . . . . . 15 𝑣 ∈ V
39 vex 3482 . . . . . . . . . . . . . . 15 𝑒 ∈ V
4038, 39op2ndd 8024 . . . . . . . . . . . . . 14 (𝑏 = ⟨𝑣, 𝑒⟩ → (2nd𝑏) = 𝑒)
4140adantr 480 . . . . . . . . . . . . 13 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → (2nd𝑏) = 𝑒)
4241adantr 480 . . . . . . . . . . . 12 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (2nd𝑏) = 𝑒)
4337, 42eqeq12d 2751 . . . . . . . . . . 11 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → ((2nd𝑎) = (2nd𝑏) ↔ 𝑓 = 𝑒))
44 eqeq12 2752 . . . . . . . . . . . . . . . 16 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ 𝑏 = ⟨𝑣, 𝑒⟩) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
4544ex 412 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑤, 𝑓⟩ → (𝑏 = ⟨𝑣, 𝑒⟩ → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4645adantr 480 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑏 = ⟨𝑣, 𝑒⟩ → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4746com12 32 . . . . . . . . . . . . 13 (𝑏 = ⟨𝑣, 𝑒⟩ → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4847adantr 480 . . . . . . . . . . . 12 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩)))
4948imp 406 . . . . . . . . . . 11 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → (𝑎 = 𝑏 ↔ ⟨𝑤, 𝑓⟩ = ⟨𝑣, 𝑒⟩))
5033, 43, 493imtr4d 294 . . . . . . . . . 10 (((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) ∧ (𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓)))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏))
5150ex 412 . . . . . . . . 9 ((𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5251exlimivv 1930 . . . . . . . 8 (∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5352com12 32 . . . . . . 7 ((𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5453exlimivv 1930 . . . . . 6 (∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) → (∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏)))
5554imp 406 . . . . 5 ((∃𝑤𝑓(𝑎 = ⟨𝑤, 𝑓⟩ ∧ (𝑤 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑤 ∧ (Edg‘𝑞) = 𝑓))) ∧ ∃𝑣𝑒(𝑏 = ⟨𝑣, 𝑒⟩ ∧ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒)))) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏))
5621, 24, 55syl2anb 598 . . . 4 ((𝑎𝐺𝑏𝐺) → ((2nd𝑎) = (2nd𝑏) → 𝑎 = 𝑏))
577, 56sylbid 240 . . 3 ((𝑎𝐺𝑏𝐺) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
5857rgen2 3197 . 2 𝑎𝐺𝑏𝐺 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)
59 dff13 7275 . 2 (𝐹:𝐺1-1𝑃 ↔ (𝐹:𝐺𝑃 ∧ ∀𝑎𝐺𝑏𝐺 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
604, 58, 59mpbir2an 711 1 𝐹:𝐺1-1𝑃
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  𝒫 cpw 4605  cop 4637  {copab 5210  cmpt 5231  wf 6559  1-1wf1 6560  cfv 6563  2nd c2nd 8012  Vtxcvtx 29028  Edgcedg 29079  USPGraphcuspgr 29180  Pairscspr 47402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-edg 29080  df-upgr 29114  df-uspgr 29182  df-spr 47403
This theorem is referenced by:  uspgrsprf1o  47993
  Copyright terms: Public domain W3C validator