|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbvex4vw | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvex4v 2419 with more disjoint variable conditions, which requires fewer axioms. (Contributed by NM, 26-Jul-1995.) Avoid ax-13 2376. (Revised by GG, 10-Jan-2024.) | 
| Ref | Expression | 
|---|---|
| cbvex4vw.1 | ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) | 
| cbvex4vw.2 | ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| cbvex4vw | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvex4vw.1 | . . . 4 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | 2exbidv 1923 | . . 3 ⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤𝜓)) | 
| 3 | 2 | cbvex2vw 2039 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑧∃𝑤𝜓) | 
| 4 | cbvex4vw.2 | . . . 4 ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | cbvex2vw 2039 | . . 3 ⊢ (∃𝑧∃𝑤𝜓 ↔ ∃𝑓∃𝑔𝜒) | 
| 6 | 5 | 2exbii 1848 | . 2 ⊢ (∃𝑣∃𝑢∃𝑧∃𝑤𝜓 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) | 
| 7 | 3, 6 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 | 
| This theorem is referenced by: addsrmo 11114 mulsrmo 11115 | 
| Copyright terms: Public domain | W3C validator |