MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsrmo Structured version   Visualization version   GIF version

Theorem addsrmo 10498
Description: There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
addsrmo ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
Distinct variable groups:   𝑡,𝐴,𝑢,𝑣,𝑤,𝑧   𝑡,𝐵,𝑢,𝑣,𝑤,𝑧

Proof of Theorem addsrmo
Dummy variables 𝑓 𝑔 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 10488 . . . . . . . . . . . . . . . 16 ~R Er (P × P)
21a1i 11 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ~R Er (P × P))
3 prsrlem1 10497 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
4 addcmpblnr 10494 . . . . . . . . . . . . . . . . 17 ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) → (((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔)) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ ~R ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩))
54imp 409 . . . . . . . . . . . . . . . 16 (((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ ~R ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩)
63, 5syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ ~R ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩)
72, 6erthi 8343 . . . . . . . . . . . . . 14 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
87adantrlr 721 . . . . . . . . . . . . 13 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
98adantrrr 723 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
10 simprlr 778 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )
11 simprrr 780 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
129, 10, 113eqtr4d 2869 . . . . . . . . . . 11 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → 𝑧 = 𝑞)
1312expr 459 . . . . . . . . . 10 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞))
1413exlimdvv 1934 . . . . . . . . 9 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → (∃𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞))
1514exlimdvv 1934 . . . . . . . 8 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞))
1615ex 415 . . . . . . 7 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞)))
1716exlimdvv 1934 . . . . . 6 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (∃𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞)))
1817exlimdvv 1934 . . . . 5 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞)))
1918impd 413 . . . 4 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
2019alrimivv 1928 . . 3 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
21 opeq12 4808 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨𝑤, 𝑣⟩ = ⟨𝑠, 𝑓⟩)
2221eceq1d 8331 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝑠, 𝑓⟩] ~R )
2322eqeq2d 2835 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐴 = [⟨𝑠, 𝑓⟩] ~R ))
2423anbi1d 631 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R )))
25 simpl 485 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑤 = 𝑠)
2625oveq1d 7174 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑤 +P 𝑢) = (𝑠 +P 𝑢))
27 simpr 487 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑣 = 𝑓)
2827oveq1d 7174 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑣 +P 𝑡) = (𝑓 +P 𝑡))
2926, 28opeq12d 4814 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ = ⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩)
3029eceq1d 8331 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R )
3130eqeq2d 2835 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R ))
3224, 31anbi12d 632 . . . . . . 7 ((𝑤 = 𝑠𝑣 = 𝑓) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R )))
33 opeq12 4808 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → ⟨𝑢, 𝑡⟩ = ⟨𝑔, ⟩)
3433eceq1d 8331 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝑔, ⟩] ~R )
3534eqeq2d 2835 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → (𝐵 = [⟨𝑢, 𝑡⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))
3635anbi2d 630 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R )))
37 simpl 485 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → 𝑢 = 𝑔)
3837oveq2d 7175 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → (𝑠 +P 𝑢) = (𝑠 +P 𝑔))
39 simpr 487 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → 𝑡 = )
4039oveq2d 7175 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → (𝑓 +P 𝑡) = (𝑓 +P ))
4138, 40opeq12d 4814 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → ⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩ = ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩)
4241eceq1d 8331 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
4342eqeq2d 2835 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → (𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))
4436, 43anbi12d 632 . . . . . . 7 ((𝑢 = 𝑔𝑡 = ) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )))
4532, 44cbvex4vw 2048 . . . . . 6 (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))
4645anbi2i 624 . . . . 5 ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) ↔ (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )))
4746imbi1i 352 . . . 4 (((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞) ↔ ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
48472albii 1820 . . 3 (∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
4920, 48sylibr 236 . 2 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞))
50 eqeq1 2828 . . . . 5 (𝑧 = 𝑞 → (𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
5150anbi2d 630 . . . 4 (𝑧 = 𝑞 → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
52514exbidv 1926 . . 3 (𝑧 = 𝑞 → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
5352mo4 2649 . 2 (∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞))
5449, 53sylibr 236 1 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1534   = wceq 1536  wex 1779  wcel 2113  ∃*wmo 2619  cop 4576   class class class wbr 5069   × cxp 5556  (class class class)co 7159   Er wer 8289  [cec 8290   / cqs 8291  Pcnp 10284   +P cpp 10286   ~R cer 10289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110  df-er 8292  df-ec 8294  df-qs 8298  df-ni 10297  df-pli 10298  df-mi 10299  df-lti 10300  df-plpq 10333  df-mpq 10334  df-ltpq 10335  df-enq 10336  df-nq 10337  df-erq 10338  df-plq 10339  df-mq 10340  df-1nq 10341  df-rq 10342  df-ltnq 10343  df-np 10406  df-plp 10408  df-ltp 10410  df-enr 10480
This theorem is referenced by:  addsrpr  10500
  Copyright terms: Public domain W3C validator