MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsrmo Structured version   Visualization version   GIF version

Theorem addsrmo 11033
Description: There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
addsrmo ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
Distinct variable groups:   𝑡,𝐴,𝑢,𝑣,𝑤,𝑧   𝑡,𝐵,𝑢,𝑣,𝑤,𝑧

Proof of Theorem addsrmo
Dummy variables 𝑓 𝑔 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 11023 . . . . . . . . . . . . . . . 16 ~R Er (P × P)
21a1i 11 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ~R Er (P × P))
3 prsrlem1 11032 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
4 addcmpblnr 11029 . . . . . . . . . . . . . . . . 17 ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) → (((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔)) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ ~R ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩))
54imp 406 . . . . . . . . . . . . . . . 16 (((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ ~R ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩)
63, 5syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ ~R ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩)
72, 6erthi 8730 . . . . . . . . . . . . . 14 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
87adantrlr 723 . . . . . . . . . . . . 13 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
98adantrrr 725 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
10 simprlr 779 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )
11 simprrr 781 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
129, 10, 113eqtr4d 2775 . . . . . . . . . . 11 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))) → 𝑧 = 𝑞)
1312expr 456 . . . . . . . . . 10 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞))
1413exlimdvv 1934 . . . . . . . . 9 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → (∃𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞))
1514exlimdvv 1934 . . . . . . . 8 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞))
1615ex 412 . . . . . . 7 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞)))
1716exlimdvv 1934 . . . . . 6 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (∃𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞)))
1817exlimdvv 1934 . . . . 5 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ) → 𝑧 = 𝑞)))
1918impd 410 . . . 4 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
2019alrimivv 1928 . . 3 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
21 opeq12 4842 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨𝑤, 𝑣⟩ = ⟨𝑠, 𝑓⟩)
2221eceq1d 8714 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝑠, 𝑓⟩] ~R )
2322eqeq2d 2741 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐴 = [⟨𝑠, 𝑓⟩] ~R ))
2423anbi1d 631 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R )))
25 simpl 482 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑤 = 𝑠)
2625oveq1d 7405 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑤 +P 𝑢) = (𝑠 +P 𝑢))
27 simpr 484 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑣 = 𝑓)
2827oveq1d 7405 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑣 +P 𝑡) = (𝑓 +P 𝑡))
2926, 28opeq12d 4848 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩ = ⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩)
3029eceq1d 8714 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R )
3130eqeq2d 2741 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R ))
3224, 31anbi12d 632 . . . . . . 7 ((𝑤 = 𝑠𝑣 = 𝑓) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R )))
33 opeq12 4842 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → ⟨𝑢, 𝑡⟩ = ⟨𝑔, ⟩)
3433eceq1d 8714 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝑔, ⟩] ~R )
3534eqeq2d 2741 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → (𝐵 = [⟨𝑢, 𝑡⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))
3635anbi2d 630 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R )))
37 simpl 482 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → 𝑢 = 𝑔)
3837oveq2d 7406 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → (𝑠 +P 𝑢) = (𝑠 +P 𝑔))
39 simpr 484 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → 𝑡 = )
4039oveq2d 7406 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → (𝑓 +P 𝑡) = (𝑓 +P ))
4138, 40opeq12d 4848 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → ⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩ = ⟨(𝑠 +P 𝑔), (𝑓 +P )⟩)
4241eceq1d 8714 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )
4342eqeq2d 2741 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → (𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))
4436, 43anbi12d 632 . . . . . . 7 ((𝑢 = 𝑔𝑡 = ) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑢), (𝑓 +P 𝑡)⟩] ~R ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )))
4532, 44cbvex4vw 2042 . . . . . 6 (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R ))
4645anbi2i 623 . . . . 5 ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) ↔ (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )))
4746imbi1i 349 . . . 4 (((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞) ↔ ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
48472albii 1820 . . 3 (∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨(𝑠 +P 𝑔), (𝑓 +P )⟩] ~R )) → 𝑧 = 𝑞))
4920, 48sylibr 234 . 2 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞))
50 eqeq1 2734 . . . . 5 (𝑧 = 𝑞 → (𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
5150anbi2d 630 . . . 4 (𝑧 = 𝑞 → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
52514exbidv 1926 . . 3 (𝑧 = 𝑞 → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )))
5352mo4 2560 . 2 (∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R )) → 𝑧 = 𝑞))
5449, 53sylibr 234 1 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑡)⟩] ~R ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2532  cop 4598   class class class wbr 5110   × cxp 5639  (class class class)co 7390   Er wer 8671  [cec 8672   / cqs 8673  Pcnp 10819   +P cpp 10821   ~R cer 10824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-ni 10832  df-pli 10833  df-mi 10834  df-lti 10835  df-plpq 10868  df-mpq 10869  df-ltpq 10870  df-enq 10871  df-nq 10872  df-erq 10873  df-plq 10874  df-mq 10875  df-1nq 10876  df-rq 10877  df-ltnq 10878  df-np 10941  df-plp 10943  df-ltp 10945  df-enr 11015
This theorem is referenced by:  addsrpr  11035
  Copyright terms: Public domain W3C validator