![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | exbidv 1899 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
3 | 2 | exbidv 1899 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∃wex 1761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 |
This theorem depends on definitions: df-bi 208 df-ex 1762 |
This theorem is referenced by: 3exbidv 1903 4exbidv 1904 cbvex4v 2393 ceqsex3v 3488 ceqsex4v 3489 2reu5 3683 copsexg 5273 euotd 5294 elopab 5304 elxpi 5465 relop 5607 dfres3 5739 xpdifid 5901 oprabv 7073 cbvoprab3 7101 elrnmpores 7144 ov6g 7168 omxpenlem 8465 dcomex 9715 ltresr 10408 hashle2prv 13682 fsumcom2 14962 fprodcom2 15171 ispos 17386 fsumvma 25471 1pthon2v 27619 dfconngr1 27654 isconngr 27655 isconngr1 27656 1conngr 27660 conngrv2edg 27661 fusgr2wsp2nb 27805 isacycgr 32000 satfv1 32218 sat1el2xp 32234 elfuns 32985 bj-cbvex4vv 33674 itg2addnclem3 34476 brxrn2 35158 dvhopellsm 37784 diblsmopel 37838 2sbc5g 40286 ichexmpl1 43113 ichnreuop 43116 ichreuopeq 43117 elsprel 43119 prprelb 43160 reuopreuprim 43170 |
Copyright terms: Public domain | W3C validator |