| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | exbidv 1922 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
| 3 | 2 | exbidv 1922 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 3exbidv 1926 4exbidv 1927 cbvex4vw 2043 cbvex4v 2417 ceqsex3v 3492 ceqsex4v 3493 2reu5 3713 opabbidv 5159 unopab 5173 copsexgw 5433 copsexg 5434 euotd 5456 elopabw 5469 elxpi 5641 relop 5794 dfres3 5937 xpdifid 6120 oprabv 7412 cbvoprab3 7443 elrnmpores 7490 ov6g 7516 omxpenlem 8998 dcomex 10345 ltresr 11038 hashle2prv 14387 fsumcom2 15683 fprodcom2 15893 ispos 18222 fsumvma 27152 1pthon2v 30135 dfconngr1 30170 isconngr 30171 isconngr1 30172 1conngr 30176 conngrv2edg 30177 fusgr2wsp2nb 30316 isacycgr 35210 satfv1 35428 sat1el2xp 35444 elfuns 35978 cbvoprab1vw 36302 cbvoprab1davw 36336 cbvoprab3davw 36338 bj-cbvex4vv 36870 itg2addnclem3 37734 brxrn2 38429 dvhopellsm 41237 diblsmopel 41291 2sbc5g 44534 fundcmpsurinj 47534 ichexmpl1 47594 ichnreuop 47597 ichreuopeq 47598 elsprel 47600 prprelb 47641 reuopreuprim 47651 nelsubc3lem 49196 cnelsubclem 49729 |
| Copyright terms: Public domain | W3C validator |