| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | exbidv 1922 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
| 3 | 2 | exbidv 1922 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 3exbidv 1926 4exbidv 1927 cbvex4vw 2043 cbvex4v 2415 ceqsex3v 3492 ceqsex4v 3493 2reu5 3717 opabbidv 5157 unopab 5171 copsexgw 5430 copsexg 5431 euotd 5453 elopabw 5466 elxpi 5638 relop 5790 dfres3 5933 xpdifid 6115 oprabv 7406 cbvoprab3 7437 elrnmpores 7484 ov6g 7510 omxpenlem 8991 dcomex 10338 ltresr 11031 hashle2prv 14385 fsumcom2 15681 fprodcom2 15891 ispos 18220 fsumvma 27152 1pthon2v 30131 dfconngr1 30166 isconngr 30167 isconngr1 30168 1conngr 30172 conngrv2edg 30173 fusgr2wsp2nb 30312 isacycgr 35187 satfv1 35405 sat1el2xp 35421 elfuns 35955 cbvoprab1vw 36277 cbvoprab1davw 36311 cbvoprab3davw 36313 bj-cbvex4vv 36845 itg2addnclem3 37719 brxrn2 38409 dvhopellsm 41162 diblsmopel 41216 2sbc5g 44455 fundcmpsurinj 47446 ichexmpl1 47506 ichnreuop 47509 ichreuopeq 47510 elsprel 47512 prprelb 47553 reuopreuprim 47563 nelsubc3lem 49108 cnelsubclem 49641 |
| Copyright terms: Public domain | W3C validator |