![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | exbidv 1920 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
3 | 2 | exbidv 1920 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 3exbidv 1924 4exbidv 1925 cbvex4vw 2041 cbvex4v 2423 ceqsex3v 3549 ceqsex4v 3550 2reu5 3780 opabbidv 5232 unopab 5248 copsexgw 5510 copsexg 5511 euotd 5532 elopabw 5545 elxpi 5722 relop 5875 dfres3 6014 xpdifid 6199 oprabv 7510 cbvoprab3 7541 elrnmpores 7588 ov6g 7614 omxpenlem 9139 dcomex 10516 ltresr 11209 hashle2prv 14527 fsumcom2 15822 fprodcom2 16032 ispos 18384 fsumvma 27275 1pthon2v 30185 dfconngr1 30220 isconngr 30221 isconngr1 30222 1conngr 30226 conngrv2edg 30227 fusgr2wsp2nb 30366 isacycgr 35113 satfv1 35331 sat1el2xp 35347 elfuns 35879 cbvoprab1vw 36203 cbvoprab1davw 36237 cbvoprab3davw 36239 bj-cbvex4vv 36771 itg2addnclem3 37633 brxrn2 38331 dvhopellsm 41074 diblsmopel 41128 2sbc5g 44385 fundcmpsurinj 47283 ichexmpl1 47343 ichnreuop 47346 ichreuopeq 47347 elsprel 47349 prprelb 47390 reuopreuprim 47400 |
Copyright terms: Public domain | W3C validator |