| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | exbidv 1921 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
| 3 | 2 | exbidv 1921 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 3exbidv 1925 4exbidv 1926 cbvex4vw 2042 cbvex4v 2413 ceqsex3v 3503 ceqsex4v 3504 2reu5 3729 opabbidv 5173 unopab 5187 copsexgw 5450 copsexg 5451 euotd 5473 elopabw 5486 elxpi 5660 relop 5814 dfres3 5955 xpdifid 6141 oprabv 7449 cbvoprab3 7480 elrnmpores 7527 ov6g 7553 omxpenlem 9042 dcomex 10400 ltresr 11093 hashle2prv 14443 fsumcom2 15740 fprodcom2 15950 ispos 18275 fsumvma 27124 1pthon2v 30082 dfconngr1 30117 isconngr 30118 isconngr1 30119 1conngr 30123 conngrv2edg 30124 fusgr2wsp2nb 30263 isacycgr 35132 satfv1 35350 sat1el2xp 35366 elfuns 35903 cbvoprab1vw 36225 cbvoprab1davw 36259 cbvoprab3davw 36261 bj-cbvex4vv 36793 itg2addnclem3 37667 brxrn2 38357 dvhopellsm 41111 diblsmopel 41165 2sbc5g 44405 fundcmpsurinj 47410 ichexmpl1 47470 ichnreuop 47473 ichreuopeq 47474 elsprel 47476 prprelb 47517 reuopreuprim 47527 nelsubc3lem 49059 cnelsubclem 49592 |
| Copyright terms: Public domain | W3C validator |