| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | exbidv 1921 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
| 3 | 2 | exbidv 1921 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 3exbidv 1925 4exbidv 1926 cbvex4vw 2042 cbvex4v 2413 ceqsex3v 3494 ceqsex4v 3495 2reu5 3720 opabbidv 5161 unopab 5175 copsexgw 5437 copsexg 5438 euotd 5460 elopabw 5473 elxpi 5645 relop 5797 dfres3 5939 xpdifid 6121 oprabv 7413 cbvoprab3 7444 elrnmpores 7491 ov6g 7517 omxpenlem 9002 dcomex 10360 ltresr 11053 hashle2prv 14403 fsumcom2 15699 fprodcom2 15909 ispos 18238 fsumvma 27140 1pthon2v 30115 dfconngr1 30150 isconngr 30151 isconngr1 30152 1conngr 30156 conngrv2edg 30157 fusgr2wsp2nb 30296 isacycgr 35117 satfv1 35335 sat1el2xp 35351 elfuns 35888 cbvoprab1vw 36210 cbvoprab1davw 36244 cbvoprab3davw 36246 bj-cbvex4vv 36778 itg2addnclem3 37652 brxrn2 38342 dvhopellsm 41096 diblsmopel 41150 2sbc5g 44389 fundcmpsurinj 47394 ichexmpl1 47454 ichnreuop 47457 ichreuopeq 47458 elsprel 47460 prprelb 47501 reuopreuprim 47511 nelsubc3lem 49056 cnelsubclem 49589 |
| Copyright terms: Public domain | W3C validator |