![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | exbidv 1919 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
3 | 2 | exbidv 1919 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: 3exbidv 1923 4exbidv 1924 cbvex4vw 2039 cbvex4v 2418 ceqsex3v 3537 ceqsex4v 3538 2reu5 3767 opabbidv 5214 unopab 5230 copsexgw 5501 copsexg 5502 euotd 5523 elopabw 5536 elxpi 5711 relop 5864 dfres3 6005 xpdifid 6190 oprabv 7493 cbvoprab3 7524 elrnmpores 7571 ov6g 7597 omxpenlem 9112 dcomex 10485 ltresr 11178 hashle2prv 14514 fsumcom2 15807 fprodcom2 16017 ispos 18372 fsumvma 27272 1pthon2v 30182 dfconngr1 30217 isconngr 30218 isconngr1 30219 1conngr 30223 conngrv2edg 30224 fusgr2wsp2nb 30363 isacycgr 35130 satfv1 35348 sat1el2xp 35364 elfuns 35897 cbvoprab1vw 36220 cbvoprab1davw 36254 cbvoprab3davw 36256 bj-cbvex4vv 36788 itg2addnclem3 37660 brxrn2 38357 dvhopellsm 41100 diblsmopel 41154 2sbc5g 44412 fundcmpsurinj 47334 ichexmpl1 47394 ichnreuop 47397 ichreuopeq 47398 elsprel 47400 prprelb 47441 reuopreuprim 47451 |
Copyright terms: Public domain | W3C validator |