| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | exbidv 1921 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
| 3 | 2 | exbidv 1921 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 3exbidv 1925 4exbidv 1926 cbvex4vw 2041 cbvex4v 2419 ceqsex3v 3516 ceqsex4v 3517 2reu5 3741 opabbidv 5185 unopab 5200 copsexgw 5465 copsexg 5466 euotd 5488 elopabw 5501 elxpi 5676 relop 5830 dfres3 5971 xpdifid 6157 oprabv 7467 cbvoprab3 7498 elrnmpores 7545 ov6g 7571 omxpenlem 9087 dcomex 10461 ltresr 11154 hashle2prv 14496 fsumcom2 15790 fprodcom2 16000 ispos 18326 fsumvma 27176 1pthon2v 30134 dfconngr1 30169 isconngr 30170 isconngr1 30171 1conngr 30175 conngrv2edg 30176 fusgr2wsp2nb 30315 isacycgr 35167 satfv1 35385 sat1el2xp 35401 elfuns 35933 cbvoprab1vw 36255 cbvoprab1davw 36289 cbvoprab3davw 36291 bj-cbvex4vv 36823 itg2addnclem3 37697 brxrn2 38393 dvhopellsm 41136 diblsmopel 41190 2sbc5g 44440 fundcmpsurinj 47423 ichexmpl1 47483 ichnreuop 47486 ichreuopeq 47487 elsprel 47489 prprelb 47530 reuopreuprim 47540 nelsubc3lem 49037 cnelsubclem 49480 |
| Copyright terms: Public domain | W3C validator |