| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
| Ref | Expression |
|---|---|
| 2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| 2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | exbidv 1921 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
| 3 | 2 | exbidv 1921 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 3exbidv 1925 4exbidv 1926 cbvex4vw 2042 cbvex4v 2414 ceqsex3v 3506 ceqsex4v 3507 2reu5 3732 opabbidv 5176 unopab 5190 copsexgw 5453 copsexg 5454 euotd 5476 elopabw 5489 elxpi 5663 relop 5817 dfres3 5958 xpdifid 6144 oprabv 7452 cbvoprab3 7483 elrnmpores 7530 ov6g 7556 omxpenlem 9047 dcomex 10407 ltresr 11100 hashle2prv 14450 fsumcom2 15747 fprodcom2 15957 ispos 18282 fsumvma 27131 1pthon2v 30089 dfconngr1 30124 isconngr 30125 isconngr1 30126 1conngr 30130 conngrv2edg 30131 fusgr2wsp2nb 30270 isacycgr 35139 satfv1 35357 sat1el2xp 35373 elfuns 35910 cbvoprab1vw 36232 cbvoprab1davw 36266 cbvoprab3davw 36268 bj-cbvex4vv 36800 itg2addnclem3 37674 brxrn2 38364 dvhopellsm 41118 diblsmopel 41172 2sbc5g 44412 fundcmpsurinj 47414 ichexmpl1 47474 ichnreuop 47477 ichreuopeq 47478 elsprel 47480 prprelb 47521 reuopreuprim 47531 nelsubc3lem 49063 cnelsubclem 49596 |
| Copyright terms: Public domain | W3C validator |