Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | exbidv 1923 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
3 | 2 | exbidv 1923 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 |
This theorem depends on definitions: df-bi 210 df-ex 1783 |
This theorem is referenced by: 3exbidv 1927 4exbidv 1928 cbvex4vw 2050 cbvex4v 2427 ceqsex3v 3463 ceqsex4v 3464 2reu5 3673 opabbidv 5099 copsexgw 5350 copsexg 5351 euotd 5373 elopab 5385 elxpi 5547 relop 5691 dfres3 5829 xpdifid 5998 oprabv 7209 cbvoprab3 7240 elrnmpores 7284 ov6g 7309 omxpenlem 8639 dcomex 9900 ltresr 10593 hashle2prv 13881 fsumcom2 15170 fprodcom2 15379 ispos 17616 fsumvma 25889 1pthon2v 28030 dfconngr1 28065 isconngr 28066 isconngr1 28067 1conngr 28071 conngrv2edg 28072 fusgr2wsp2nb 28211 isacycgr 32616 satfv1 32834 sat1el2xp 32850 elfuns 33759 bj-cbvex4vv 34516 itg2addnclem3 35383 brxrn2 36060 dvhopellsm 38686 diblsmopel 38740 2sbc5g 41486 fundcmpsurinj 44287 ichexmpl1 44347 ichnreuop 44350 ichreuopeq 44351 elsprel 44353 prprelb 44394 reuopreuprim 44404 |
Copyright terms: Public domain | W3C validator |