Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | exbidv 1925 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
3 | 2 | exbidv 1925 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 3exbidv 1929 4exbidv 1930 cbvex4vw 2046 cbvex4v 2415 ceqsex3v 3474 ceqsex4v 3475 2reu5 3688 opabbidv 5136 unopab 5152 copsexgw 5398 copsexg 5399 euotd 5421 elopab 5433 elxpi 5602 relop 5748 dfres3 5885 xpdifid 6060 oprabv 7313 cbvoprab3 7344 elrnmpores 7389 ov6g 7414 omxpenlem 8813 dcomex 10134 ltresr 10827 hashle2prv 14120 fsumcom2 15414 fprodcom2 15622 ispos 17947 fsumvma 26266 1pthon2v 28418 dfconngr1 28453 isconngr 28454 isconngr1 28455 1conngr 28459 conngrv2edg 28460 fusgr2wsp2nb 28599 isacycgr 33007 satfv1 33225 sat1el2xp 33241 elfuns 34144 bj-cbvex4vv 34914 itg2addnclem3 35757 brxrn2 36432 dvhopellsm 39058 diblsmopel 39112 2sbc5g 41923 fundcmpsurinj 44749 ichexmpl1 44809 ichnreuop 44812 ichreuopeq 44813 elsprel 44815 prprelb 44856 reuopreuprim 44866 |
Copyright terms: Public domain | W3C validator |