Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
2albidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
2exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2albidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | exbidv 1924 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 ↔ ∃𝑦𝜒)) |
3 | 2 | exbidv 1924 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑥∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 3exbidv 1928 4exbidv 1929 cbvex4vw 2045 cbvex4v 2415 ceqsex3v 3484 ceqsex4v 3485 2reu5 3693 opabbidv 5140 unopab 5156 copsexgw 5404 copsexg 5405 euotd 5427 elopabw 5439 elxpi 5611 relop 5759 dfres3 5896 xpdifid 6071 oprabv 7335 cbvoprab3 7366 elrnmpores 7411 ov6g 7436 omxpenlem 8860 dcomex 10203 ltresr 10896 hashle2prv 14192 fsumcom2 15486 fprodcom2 15694 ispos 18032 fsumvma 26361 1pthon2v 28517 dfconngr1 28552 isconngr 28553 isconngr1 28554 1conngr 28558 conngrv2edg 28559 fusgr2wsp2nb 28698 isacycgr 33107 satfv1 33325 sat1el2xp 33341 elfuns 34217 bj-cbvex4vv 34987 itg2addnclem3 35830 brxrn2 36505 dvhopellsm 39131 diblsmopel 39185 2sbc5g 42034 fundcmpsurinj 44861 ichexmpl1 44921 ichnreuop 44924 ichreuopeq 44925 elsprel 44927 prprelb 44968 reuopreuprim 44978 |
Copyright terms: Public domain | W3C validator |