MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsrmo Structured version   Visualization version   GIF version

Theorem mulsrmo 11093
Description: There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
mulsrmo ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ))
Distinct variable groups:   𝑡,𝐴,𝑢,𝑣,𝑤,𝑧   𝑡,𝐵,𝑢,𝑣,𝑤,𝑧

Proof of Theorem mulsrmo
Dummy variables 𝑓 𝑔 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 11082 . . . . . . . . . . . . . . . 16 ~R Er (P × P)
21a1i 11 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ~R Er (P × P))
3 prsrlem1 11091 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
4 mulcmpblnr 11090 . . . . . . . . . . . . . . . . 17 ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) → (((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔)) → ⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩ ~R ⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩))
54imp 406 . . . . . . . . . . . . . . . 16 (((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))) → ⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩ ~R ⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩)
63, 5syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩ ~R ⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩)
72, 6erthi 8777 . . . . . . . . . . . . . 14 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )
87adantrlr 723 . . . . . . . . . . . . 13 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )
98adantrrr 725 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))) → [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )
10 simprlr 779 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))) → 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )
11 simprrr 781 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))) → 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )
129, 10, 113eqtr4d 2781 . . . . . . . . . . 11 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))) → 𝑧 = 𝑞)
1312expr 456 . . . . . . . . . 10 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞))
1413exlimdvv 1934 . . . . . . . . 9 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → (∃𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞))
1514exlimdvv 1934 . . . . . . . 8 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞))
1615ex 412 . . . . . . 7 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞)))
1716exlimdvv 1934 . . . . . 6 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (∃𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞)))
1817exlimdvv 1934 . . . . 5 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞)))
1918impd 410 . . . 4 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )) → 𝑧 = 𝑞))
2019alrimivv 1928 . . 3 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )) → 𝑧 = 𝑞))
21 opeq12 4856 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨𝑤, 𝑣⟩ = ⟨𝑠, 𝑓⟩)
2221eceq1d 8764 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝑠, 𝑓⟩] ~R )
2322eqeq2d 2747 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐴 = [⟨𝑠, 𝑓⟩] ~R ))
2423anbi1d 631 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R )))
25 simpl 482 . . . . . . . . . . . . 13 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑤 = 𝑠)
2625oveq1d 7425 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑤 ·P 𝑢) = (𝑠 ·P 𝑢))
27 simpr 484 . . . . . . . . . . . . 13 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑣 = 𝑓)
2827oveq1d 7425 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑣 ·P 𝑡) = (𝑓 ·P 𝑡))
2926, 28oveq12d 7428 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → ((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)) = ((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)))
3025oveq1d 7425 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑤 ·P 𝑡) = (𝑠 ·P 𝑡))
3127oveq1d 7425 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑣 ·P 𝑢) = (𝑓 ·P 𝑢))
3230, 31oveq12d 7428 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢)) = ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢)))
3329, 32opeq12d 4862 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩ = ⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩)
3433eceq1d 8764 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R = [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R )
3534eqeq2d 2747 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R𝑞 = [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R ))
3624, 35anbi12d 632 . . . . . . 7 ((𝑤 = 𝑠𝑣 = 𝑓) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R )))
37 opeq12 4856 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → ⟨𝑢, 𝑡⟩ = ⟨𝑔, ⟩)
3837eceq1d 8764 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝑔, ⟩] ~R )
3938eqeq2d 2747 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → (𝐵 = [⟨𝑢, 𝑡⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))
4039anbi2d 630 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R )))
41 simpl 482 . . . . . . . . . . . . 13 ((𝑢 = 𝑔𝑡 = ) → 𝑢 = 𝑔)
4241oveq2d 7426 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → (𝑠 ·P 𝑢) = (𝑠 ·P 𝑔))
43 simpr 484 . . . . . . . . . . . . 13 ((𝑢 = 𝑔𝑡 = ) → 𝑡 = )
4443oveq2d 7426 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → (𝑓 ·P 𝑡) = (𝑓 ·P ))
4542, 44oveq12d 7428 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → ((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)) = ((𝑠 ·P 𝑔) +P (𝑓 ·P )))
4643oveq2d 7426 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → (𝑠 ·P 𝑡) = (𝑠 ·P ))
4741oveq2d 7426 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → (𝑓 ·P 𝑢) = (𝑓 ·P 𝑔))
4846, 47oveq12d 7428 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢)) = ((𝑠 ·P ) +P (𝑓 ·P 𝑔)))
4945, 48opeq12d 4862 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → ⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩ = ⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩)
5049eceq1d 8764 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )
5150eqeq2d 2747 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → (𝑞 = [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))
5240, 51anbi12d 632 . . . . . . 7 ((𝑢 = 𝑔𝑡 = ) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )))
5336, 52cbvex4vw 2042 . . . . . 6 (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ↔ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))
5453anbi2i 623 . . . . 5 ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) ↔ (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )))
5554imbi1i 349 . . . 4 (((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → 𝑧 = 𝑞) ↔ ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )) → 𝑧 = 𝑞))
56552albii 1820 . . 3 (∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → 𝑧 = 𝑞) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )) → 𝑧 = 𝑞))
5720, 56sylibr 234 . 2 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → 𝑧 = 𝑞))
58 eqeq1 2740 . . . . 5 (𝑧 = 𝑞 → (𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ))
5958anbi2d 630 . . . 4 (𝑧 = 𝑞 → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ↔ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )))
60594exbidv 1926 . . 3 (𝑧 = 𝑞 → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ↔ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )))
6160mo4 2566 . 2 (∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → 𝑧 = 𝑞))
6257, 61sylibr 234 1 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2538  cop 4612   class class class wbr 5124   × cxp 5657  (class class class)co 7410   Er wer 8721  [cec 8722   / cqs 8723  Pcnp 10878   +P cpp 10880   ·P cmp 10881   ~R cer 10883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-ni 10891  df-pli 10892  df-mi 10893  df-lti 10894  df-plpq 10927  df-mpq 10928  df-ltpq 10929  df-enq 10930  df-nq 10931  df-erq 10932  df-plq 10933  df-mq 10934  df-1nq 10935  df-rq 10936  df-ltnq 10937  df-np 11000  df-plp 11002  df-mp 11003  df-ltp 11004  df-enr 11074
This theorem is referenced by:  mulsrpr  11095
  Copyright terms: Public domain W3C validator