MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsrmo Structured version   Visualization version   GIF version

Theorem mulsrmo 11096
Description: There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
mulsrmo ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ))
Distinct variable groups:   𝑡,𝐴,𝑢,𝑣,𝑤,𝑧   𝑡,𝐵,𝑢,𝑣,𝑤,𝑧

Proof of Theorem mulsrmo
Dummy variables 𝑓 𝑔 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 11085 . . . . . . . . . . . . . . . 16 ~R Er (P × P)
21a1i 11 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ~R Er (P × P))
3 prsrlem1 11094 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))))
4 mulcmpblnr 11093 . . . . . . . . . . . . . . . . 17 ((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) → (((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔)) → ⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩ ~R ⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩))
54imp 406 . . . . . . . . . . . . . . . 16 (((((𝑤P𝑣P) ∧ (𝑠P𝑓P)) ∧ ((𝑢P𝑡P) ∧ (𝑔PP))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ) = (𝑡 +P 𝑔))) → ⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩ ~R ⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩)
63, 5syl 17 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → ⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩ ~R ⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩)
72, 6erthi 8780 . . . . . . . . . . . . . 14 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )
87adantrlr 723 . . . . . . . . . . . . 13 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))) → [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )
98adantrrr 725 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))) → [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )
10 simprlr 779 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))) → 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )
11 simprrr 781 . . . . . . . . . . . 12 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))) → 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )
129, 10, 113eqtr4d 2779 . . . . . . . . . . 11 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))) → 𝑧 = 𝑞)
1312expr 456 . . . . . . . . . 10 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞))
1413exlimdvv 1933 . . . . . . . . 9 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → (∃𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞))
1514exlimdvv 1933 . . . . . . . 8 (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞))
1615ex 412 . . . . . . 7 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞)))
1716exlimdvv 1933 . . . . . 6 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (∃𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞)))
1817exlimdvv 1933 . . . . 5 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ) → 𝑧 = 𝑞)))
1918impd 410 . . . 4 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )) → 𝑧 = 𝑞))
2019alrimivv 1927 . . 3 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )) → 𝑧 = 𝑞))
21 opeq12 4855 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨𝑤, 𝑣⟩ = ⟨𝑠, 𝑓⟩)
2221eceq1d 8767 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨𝑤, 𝑣⟩] ~R = [⟨𝑠, 𝑓⟩] ~R )
2322eqeq2d 2745 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐴 = [⟨𝑠, 𝑓⟩] ~R ))
2423anbi1d 631 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R )))
25 simpl 482 . . . . . . . . . . . . 13 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑤 = 𝑠)
2625oveq1d 7428 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑤 ·P 𝑢) = (𝑠 ·P 𝑢))
27 simpr 484 . . . . . . . . . . . . 13 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑣 = 𝑓)
2827oveq1d 7428 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑣 ·P 𝑡) = (𝑓 ·P 𝑡))
2926, 28oveq12d 7431 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → ((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)) = ((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)))
3025oveq1d 7428 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑤 ·P 𝑡) = (𝑠 ·P 𝑡))
3127oveq1d 7428 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑣 ·P 𝑢) = (𝑓 ·P 𝑢))
3230, 31oveq12d 7431 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢)) = ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢)))
3329, 32opeq12d 4861 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩ = ⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩)
3433eceq1d 8767 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R = [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R )
3534eqeq2d 2745 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R𝑞 = [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R ))
3624, 35anbi12d 632 . . . . . . 7 ((𝑤 = 𝑠𝑣 = 𝑓) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R )))
37 opeq12 4855 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → ⟨𝑢, 𝑡⟩ = ⟨𝑔, ⟩)
3837eceq1d 8767 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → [⟨𝑢, 𝑡⟩] ~R = [⟨𝑔, ⟩] ~R )
3938eqeq2d 2745 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → (𝐵 = [⟨𝑢, 𝑡⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ))
4039anbi2d 630 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R )))
41 simpl 482 . . . . . . . . . . . . 13 ((𝑢 = 𝑔𝑡 = ) → 𝑢 = 𝑔)
4241oveq2d 7429 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → (𝑠 ·P 𝑢) = (𝑠 ·P 𝑔))
43 simpr 484 . . . . . . . . . . . . 13 ((𝑢 = 𝑔𝑡 = ) → 𝑡 = )
4443oveq2d 7429 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → (𝑓 ·P 𝑡) = (𝑓 ·P ))
4542, 44oveq12d 7431 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → ((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)) = ((𝑠 ·P 𝑔) +P (𝑓 ·P )))
4643oveq2d 7429 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → (𝑠 ·P 𝑡) = (𝑠 ·P ))
4741oveq2d 7429 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → (𝑓 ·P 𝑢) = (𝑓 ·P 𝑔))
4846, 47oveq12d 7431 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢)) = ((𝑠 ·P ) +P (𝑓 ·P 𝑔)))
4945, 48opeq12d 4861 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → ⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩ = ⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩)
5049eceq1d 8767 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )
5150eqeq2d 2745 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → (𝑞 = [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))
5240, 51anbi12d 632 . . . . . . 7 ((𝑢 = 𝑔𝑡 = ) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑢) +P (𝑓 ·P 𝑡)), ((𝑠 ·P 𝑡) +P (𝑓 ·P 𝑢))⟩] ~R ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )))
5336, 52cbvex4vw 2040 . . . . . 6 (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ↔ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R ))
5453anbi2i 623 . . . . 5 ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) ↔ (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )))
5554imbi1i 349 . . . 4 (((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → 𝑧 = 𝑞) ↔ ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )) → 𝑧 = 𝑞))
56552albii 1819 . . 3 (∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → 𝑧 = 𝑞) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~R𝐵 = [⟨𝑔, ⟩] ~R ) ∧ 𝑞 = [⟨((𝑠 ·P 𝑔) +P (𝑓 ·P )), ((𝑠 ·P ) +P (𝑓 ·P 𝑔))⟩] ~R )) → 𝑧 = 𝑞))
5720, 56sylibr 234 . 2 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → 𝑧 = 𝑞))
58 eqeq1 2738 . . . . 5 (𝑧 = 𝑞 → (𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ))
5958anbi2d 630 . . . 4 (𝑧 = 𝑞 → (((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ↔ ((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )))
60594exbidv 1925 . . 3 (𝑧 = 𝑞 → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ↔ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )))
6160mo4 2564 . 2 (∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑞 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R )) → 𝑧 = 𝑞))
6257, 61sylibr 234 1 ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~R𝐵 = [⟨𝑢, 𝑡⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))⟩] ~R ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1778  wcel 2107  ∃*wmo 2536  cop 4612   class class class wbr 5123   × cxp 5663  (class class class)co 7413   Er wer 8724  [cec 8725   / cqs 8726  Pcnp 10881   +P cpp 10883   ·P cmp 10884   ~R cer 10886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-oadd 8492  df-omul 8493  df-er 8727  df-ec 8729  df-qs 8733  df-ni 10894  df-pli 10895  df-mi 10896  df-lti 10897  df-plpq 10930  df-mpq 10931  df-ltpq 10932  df-enq 10933  df-nq 10934  df-erq 10935  df-plq 10936  df-mq 10937  df-1nq 10938  df-rq 10939  df-ltnq 10940  df-np 11003  df-plp 11005  df-mp 11006  df-ltp 11007  df-enr 11077
This theorem is referenced by:  mulsrpr  11098
  Copyright terms: Public domain W3C validator