| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvrmodavw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and quantifier domain in the restricted at-most-one quantifier. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvrmodavw2.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| cbvrmodavw2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbvrmodavw2 | ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
| 2 | cbvrmodavw2.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eleq12d 2834 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 4 | cbvrmodavw2.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | anbi12d 632 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) |
| 6 | 5 | cbvmodavw 36229 | . 2 ⊢ (𝜑 → (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃*𝑦(𝑦 ∈ 𝐵 ∧ 𝜒))) |
| 7 | df-rmo 3379 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 8 | df-rmo 3379 | . 2 ⊢ (∃*𝑦 ∈ 𝐵 𝜒 ↔ ∃*𝑦(𝑦 ∈ 𝐵 ∧ 𝜒)) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃*wmo 2537 ∃*wrmo 3378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 df-cleq 2728 df-clel 2815 df-rmo 3379 |
| This theorem is referenced by: cbvdisjdavw2 36268 |
| Copyright terms: Public domain | W3C validator |