Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvditgvw2 Structured version   Visualization version   GIF version

Theorem cbvditgvw2 36188
Description: Change bound variable and domain in a directed integral, using implicit substitution. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
cbvditgvw2.1 𝐴 = 𝐵
cbvditgvw2.2 𝐶 = 𝐷
cbvditgvw2.3 (𝑥 = 𝑦𝐸 = 𝐹)
Assertion
Ref Expression
cbvditgvw2 ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐹 d𝑦
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷   𝑦,𝐸   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)   𝐸(𝑥)   𝐹(𝑦)

Proof of Theorem cbvditgvw2
StepHypRef Expression
1 cbvditgvw2.1 . . . 4 𝐴 = 𝐵
2 cbvditgvw2.2 . . . 4 𝐶 = 𝐷
31, 2breq12i 5125 . . 3 (𝐴𝐶𝐵𝐷)
4 cbvditgvw2.3 . . . 4 (𝑥 = 𝑦𝐸 = 𝐹)
51, 2oveq12i 7411 . . . . 5 (𝐴(,)𝐶) = (𝐵(,)𝐷)
65a1i 11 . . . 4 (𝑥 = 𝑦 → (𝐴(,)𝐶) = (𝐵(,)𝐷))
74, 6cbvitgvw2 36187 . . 3 ∫(𝐴(,)𝐶)𝐸 d𝑥 = ∫(𝐵(,)𝐷)𝐹 d𝑦
82a1i 11 . . . . . 6 (𝑥 = 𝑦𝐶 = 𝐷)
91a1i 11 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝐵)
108, 9oveq12d 7417 . . . . 5 (𝑥 = 𝑦 → (𝐶(,)𝐴) = (𝐷(,)𝐵))
114, 10cbvitgvw2 36187 . . . 4 ∫(𝐶(,)𝐴)𝐸 d𝑥 = ∫(𝐷(,)𝐵)𝐹 d𝑦
1211negeqi 11467 . . 3 -∫(𝐶(,)𝐴)𝐸 d𝑥 = -∫(𝐷(,)𝐵)𝐹 d𝑦
133, 7, 12ifbieq12i 4526 . 2 if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) = if(𝐵𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑦, -∫(𝐷(,)𝐵)𝐹 d𝑦)
14 df-ditg 25785 . 2 ⨜[𝐴𝐶]𝐸 d𝑥 = if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥)
15 df-ditg 25785 . 2 ⨜[𝐵𝐷]𝐹 d𝑦 = if(𝐵𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑦, -∫(𝐷(,)𝐵)𝐹 d𝑦)
1613, 14, 153eqtr4i 2767 1 ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐹 d𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ifcif 4498   class class class wbr 5116  (class class class)co 7399  cle 11262  -cneg 11459  (,)cioo 13353  citg 25556  cdit 25784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-xp 5657  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-iota 6480  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-neg 11461  df-seq 14009  df-sum 15690  df-itg 25561  df-ditg 25785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator