| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvditgvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and domain in a directed integral, using implicit substitution. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| cbvditgvw2.1 | ⊢ 𝐴 = 𝐵 |
| cbvditgvw2.2 | ⊢ 𝐶 = 𝐷 |
| cbvditgvw2.3 | ⊢ (𝑥 = 𝑦 → 𝐸 = 𝐹) |
| Ref | Expression |
|---|---|
| cbvditgvw2 | ⊢ ⨜[𝐴 → 𝐶]𝐸 d𝑥 = ⨜[𝐵 → 𝐷]𝐹 d𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvditgvw2.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | cbvditgvw2.2 | . . . 4 ⊢ 𝐶 = 𝐷 | |
| 3 | 1, 2 | breq12i 5095 | . . 3 ⊢ (𝐴 ≤ 𝐶 ↔ 𝐵 ≤ 𝐷) |
| 4 | cbvditgvw2.3 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐸 = 𝐹) | |
| 5 | 1, 2 | oveq12i 7353 | . . . . 5 ⊢ (𝐴(,)𝐶) = (𝐵(,)𝐷) |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴(,)𝐶) = (𝐵(,)𝐷)) |
| 7 | 4, 6 | cbvitgvw2 36282 | . . 3 ⊢ ∫(𝐴(,)𝐶)𝐸 d𝑥 = ∫(𝐵(,)𝐷)𝐹 d𝑦 |
| 8 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| 9 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| 10 | 8, 9 | oveq12d 7359 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐶(,)𝐴) = (𝐷(,)𝐵)) |
| 11 | 4, 10 | cbvitgvw2 36282 | . . . 4 ⊢ ∫(𝐶(,)𝐴)𝐸 d𝑥 = ∫(𝐷(,)𝐵)𝐹 d𝑦 |
| 12 | 11 | negeqi 11348 | . . 3 ⊢ -∫(𝐶(,)𝐴)𝐸 d𝑥 = -∫(𝐷(,)𝐵)𝐹 d𝑦 |
| 13 | 3, 7, 12 | ifbieq12i 4498 | . 2 ⊢ if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) = if(𝐵 ≤ 𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑦, -∫(𝐷(,)𝐵)𝐹 d𝑦) |
| 14 | df-ditg 25770 | . 2 ⊢ ⨜[𝐴 → 𝐶]𝐸 d𝑥 = if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) | |
| 15 | df-ditg 25770 | . 2 ⊢ ⨜[𝐵 → 𝐷]𝐹 d𝑦 = if(𝐵 ≤ 𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑦, -∫(𝐷(,)𝐵)𝐹 d𝑦) | |
| 16 | 13, 14, 15 | 3eqtr4i 2764 | 1 ⊢ ⨜[𝐴 → 𝐶]𝐸 d𝑥 = ⨜[𝐵 → 𝐷]𝐹 d𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ifcif 4470 class class class wbr 5086 (class class class)co 7341 ≤ cle 11142 -cneg 11340 (,)cioo 13240 ∫citg 25541 ⨜cdit 25769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-iota 6432 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-neg 11342 df-seq 13904 df-sum 15589 df-itg 25546 df-ditg 25770 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |