| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvditgvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and domain in a directed integral, using implicit substitution. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| cbvditgvw2.1 | ⊢ 𝐴 = 𝐵 |
| cbvditgvw2.2 | ⊢ 𝐶 = 𝐷 |
| cbvditgvw2.3 | ⊢ (𝑥 = 𝑦 → 𝐸 = 𝐹) |
| Ref | Expression |
|---|---|
| cbvditgvw2 | ⊢ ⨜[𝐴 → 𝐶]𝐸 d𝑥 = ⨜[𝐵 → 𝐷]𝐹 d𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvditgvw2.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | cbvditgvw2.2 | . . . 4 ⊢ 𝐶 = 𝐷 | |
| 3 | 1, 2 | breq12i 5104 | . . 3 ⊢ (𝐴 ≤ 𝐶 ↔ 𝐵 ≤ 𝐷) |
| 4 | cbvditgvw2.3 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐸 = 𝐹) | |
| 5 | 1, 2 | oveq12i 7367 | . . . . 5 ⊢ (𝐴(,)𝐶) = (𝐵(,)𝐷) |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴(,)𝐶) = (𝐵(,)𝐷)) |
| 7 | 4, 6 | cbvitgvw2 36364 | . . 3 ⊢ ∫(𝐴(,)𝐶)𝐸 d𝑥 = ∫(𝐵(,)𝐷)𝐹 d𝑦 |
| 8 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| 9 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| 10 | 8, 9 | oveq12d 7373 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐶(,)𝐴) = (𝐷(,)𝐵)) |
| 11 | 4, 10 | cbvitgvw2 36364 | . . . 4 ⊢ ∫(𝐶(,)𝐴)𝐸 d𝑥 = ∫(𝐷(,)𝐵)𝐹 d𝑦 |
| 12 | 11 | negeqi 11364 | . . 3 ⊢ -∫(𝐶(,)𝐴)𝐸 d𝑥 = -∫(𝐷(,)𝐵)𝐹 d𝑦 |
| 13 | 3, 7, 12 | ifbieq12i 4504 | . 2 ⊢ if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) = if(𝐵 ≤ 𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑦, -∫(𝐷(,)𝐵)𝐹 d𝑦) |
| 14 | df-ditg 25795 | . 2 ⊢ ⨜[𝐴 → 𝐶]𝐸 d𝑥 = if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) | |
| 15 | df-ditg 25795 | . 2 ⊢ ⨜[𝐵 → 𝐷]𝐹 d𝑦 = if(𝐵 ≤ 𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑦, -∫(𝐷(,)𝐵)𝐹 d𝑦) | |
| 16 | 13, 14, 15 | 3eqtr4i 2766 | 1 ⊢ ⨜[𝐴 → 𝐶]𝐸 d𝑥 = ⨜[𝐵 → 𝐷]𝐹 d𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ifcif 4476 class class class wbr 5095 (class class class)co 7355 ≤ cle 11158 -cneg 11356 (,)cioo 13252 ∫citg 25566 ⨜cdit 25794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-iota 6445 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-neg 11358 df-seq 13916 df-sum 15601 df-itg 25571 df-ditg 25795 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |