| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvditgvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and domain in a directed integral, using implicit substitution. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| cbvditgvw2.1 | ⊢ 𝐴 = 𝐵 |
| cbvditgvw2.2 | ⊢ 𝐶 = 𝐷 |
| cbvditgvw2.3 | ⊢ (𝑥 = 𝑦 → 𝐸 = 𝐹) |
| Ref | Expression |
|---|---|
| cbvditgvw2 | ⊢ ⨜[𝐴 → 𝐶]𝐸 d𝑥 = ⨜[𝐵 → 𝐷]𝐹 d𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvditgvw2.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | cbvditgvw2.2 | . . . 4 ⊢ 𝐶 = 𝐷 | |
| 3 | 1, 2 | breq12i 5111 | . . 3 ⊢ (𝐴 ≤ 𝐶 ↔ 𝐵 ≤ 𝐷) |
| 4 | cbvditgvw2.3 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐸 = 𝐹) | |
| 5 | 1, 2 | oveq12i 7381 | . . . . 5 ⊢ (𝐴(,)𝐶) = (𝐵(,)𝐷) |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴(,)𝐶) = (𝐵(,)𝐷)) |
| 7 | 4, 6 | cbvitgvw2 36209 | . . 3 ⊢ ∫(𝐴(,)𝐶)𝐸 d𝑥 = ∫(𝐵(,)𝐷)𝐹 d𝑦 |
| 8 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| 9 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| 10 | 8, 9 | oveq12d 7387 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐶(,)𝐴) = (𝐷(,)𝐵)) |
| 11 | 4, 10 | cbvitgvw2 36209 | . . . 4 ⊢ ∫(𝐶(,)𝐴)𝐸 d𝑥 = ∫(𝐷(,)𝐵)𝐹 d𝑦 |
| 12 | 11 | negeqi 11390 | . . 3 ⊢ -∫(𝐶(,)𝐴)𝐸 d𝑥 = -∫(𝐷(,)𝐵)𝐹 d𝑦 |
| 13 | 3, 7, 12 | ifbieq12i 4512 | . 2 ⊢ if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) = if(𝐵 ≤ 𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑦, -∫(𝐷(,)𝐵)𝐹 d𝑦) |
| 14 | df-ditg 25724 | . 2 ⊢ ⨜[𝐴 → 𝐶]𝐸 d𝑥 = if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) | |
| 15 | df-ditg 25724 | . 2 ⊢ ⨜[𝐵 → 𝐷]𝐹 d𝑦 = if(𝐵 ≤ 𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑦, -∫(𝐷(,)𝐵)𝐹 d𝑦) | |
| 16 | 13, 14, 15 | 3eqtr4i 2762 | 1 ⊢ ⨜[𝐴 → 𝐶]𝐸 d𝑥 = ⨜[𝐵 → 𝐷]𝐹 d𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4484 class class class wbr 5102 (class class class)co 7369 ≤ cle 11185 -cneg 11382 (,)cioo 13282 ∫citg 25495 ⨜cdit 25723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-iota 6452 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-neg 11384 df-seq 13943 df-sum 15629 df-itg 25500 df-ditg 25724 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |