MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvaldvaw Structured version   Visualization version   GIF version

Theorem cbvaldvaw 2044
Description: Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. Version of cbvaldva 2410 with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017.) (Revised by Gino Giotto, 10-Jan-2024.) Reduce axiom usage, along an idea of Gino Giotto. (Revised by Wolf Lammen, 10-Feb-2024.)
Hypothesis
Ref Expression
cbvaldvaw.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvaldvaw (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Distinct variable groups:   𝜓,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvaldvaw
StepHypRef Expression
1 cbvaldvaw.1 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
21ancoms 458 . . . . 5 ((𝑥 = 𝑦𝜑) → (𝜓𝜒))
32pm5.74da 800 . . . 4 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜒)))
43cbvalvw 2042 . . 3 (∀𝑥(𝜑𝜓) ↔ ∀𝑦(𝜑𝜒))
5 19.21v 1945 . . 3 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
6 19.21v 1945 . . 3 (∀𝑦(𝜑𝜒) ↔ (𝜑 → ∀𝑦𝜒))
74, 5, 63bitr3i 300 . 2 ((𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑦𝜒))
87pm5.74ri 271 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786
This theorem is referenced by:  cbvexdvaw  2045  cbval2vw  2046  scottabf  41811  ismnu  41832
  Copyright terms: Public domain W3C validator