Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvaldvaw | Structured version Visualization version GIF version |
Description: Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. Version of cbvaldva 2410 with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017.) (Revised by Gino Giotto, 10-Jan-2024.) Reduce axiom usage, along an idea of Gino Giotto. (Revised by Wolf Lammen, 10-Feb-2024.) |
Ref | Expression |
---|---|
cbvaldvaw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
cbvaldvaw | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvaldvaw.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
2 | 1 | ancoms 458 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝜓 ↔ 𝜒)) |
3 | 2 | pm5.74da 800 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
4 | 3 | cbvalvw 2042 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ ∀𝑦(𝜑 → 𝜒)) |
5 | 19.21v 1945 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) | |
6 | 19.21v 1945 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜒) ↔ (𝜑 → ∀𝑦𝜒)) | |
7 | 4, 5, 6 | 3bitr3i 300 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑦𝜒)) |
8 | 7 | pm5.74ri 271 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 |
This theorem is referenced by: cbvexdvaw 2045 cbval2vw 2046 scottabf 41811 ismnu 41832 |
Copyright terms: Public domain | W3C validator |