![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equequ1 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
Ref | Expression |
---|---|
equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7 2015 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | equtr 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: equvinv 2028 equvelv 2030 spaev 2052 sbjust 2063 equsb3 2103 cbvsbvf 2369 drsb1 2503 mo4 2569 sb8eulem 2601 cbvmovw 2605 cbvmow 2606 axextg 2713 reu6 3748 reu7 3754 reu8nf 3899 disjxun 5164 solin 5634 cbviotaw 6532 cbviota 6535 dff13f 7293 poxp 8169 poxp2 8184 poxp3 8191 unxpdomlem1 9313 unxpdomlem2 9314 aceq0 10187 zfac 10529 axrepndlem1 10661 zfcndac 10688 injresinj 13838 fsum2dlem 15818 ramub1lem2 17074 ramcl 17076 symgextf1 19463 mamulid 22468 mamurid 22469 mdetdiagid 22627 mdetunilem9 22647 alexsubALTlem3 24078 ptcmplem2 24082 dscmet 24606 dyadmbllem 25653 opnmbllem 25655 isppw2 27176 2sqreulem1 27508 2sqreunnlem1 27511 frgr2wwlk1 30361 disji2f 32599 disjif2 32603 cbvmodavw 36216 cbvsbdavw 36220 cbvsbdavw2 36221 bj-ssblem1 36620 bj-ssblem2 36621 cbveud 37338 wl-naevhba1v 37474 wl-equsb3 37510 mblfinlem1 37617 bfp 37784 dveeq1-o 38891 dveeq1-o16 38892 axc11n-16 38894 ax12eq 38897 aks6d1c6lem3 42129 aks6d1c7 42141 fsuppind 42545 eu6w 42631 fphpd 42772 ax6e2nd 44529 ax6e2ndVD 44879 ax6e2ndALT 44901 disjinfi 45099 iundjiun 46381 hspdifhsp 46537 hspmbl 46550 2reu8i 47028 2reuimp0 47029 ichexmpl1 47343 lcoss 48165 |
Copyright terms: Public domain | W3C validator |