| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ1 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
| Ref | Expression |
|---|---|
| equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7 2017 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
| 2 | equtr 2022 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: equvinv 2030 equvelv 2032 spaev 2055 sbjust 2066 equsb3 2108 cbvsbvf 2365 drsb1 2497 mo4 2563 sb8eulem 2595 cbvmovw 2599 cbvmow 2600 axextg 2707 reu6 3681 reu7 3687 reu8nf 3824 disjxun 5091 solin 5554 cbviotaw 6449 cbviota 6451 dff13f 7195 poxp 8064 poxp2 8079 poxp3 8086 unxpdomlem1 9147 unxpdomlem2 9148 aceq0 10016 zfac 10358 axrepndlem1 10490 zfcndac 10517 injresinj 13693 fsum2dlem 15679 ramub1lem2 16941 ramcl 16943 symgextf1 19335 mamulid 22357 mamurid 22358 mdetdiagid 22516 mdetunilem9 22536 alexsubALTlem3 23965 ptcmplem2 23969 dscmet 24488 dyadmbllem 25528 opnmbllem 25530 isppw2 27053 2sqreulem1 27385 2sqreunnlem1 27388 frgr2wwlk1 30311 disji2f 32559 disjif2 32563 cbvmodavw 36315 cbvsbdavw 36319 cbvsbdavw2 36320 bj-ssblem1 36719 bj-ssblem2 36720 cbveud 37437 wl-naevhba1v 37585 wl-equsb3 37621 mblfinlem1 37717 bfp 37884 dveeq1-o 39054 dveeq1-o16 39055 axc11n-16 39057 ax12eq 39060 aks6d1c6lem3 42285 aks6d1c7 42297 fsuppind 42708 eu6w 42794 fphpd 42933 ax6e2nd 44675 ax6e2ndVD 45024 ax6e2ndALT 45046 disjinfi 45313 iundjiun 46582 hspdifhsp 46738 hspmbl 46751 2reu8i 47237 2reuimp0 47238 ichexmpl1 47593 lcoss 48561 |
| Copyright terms: Public domain | W3C validator |