| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ1 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
| Ref | Expression |
|---|---|
| equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7 2016 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
| 2 | equtr 2021 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equvinv 2029 equvelv 2031 spaev 2053 sbjust 2064 equsb3 2104 cbvsbvf 2362 drsb1 2494 mo4 2560 sb8eulem 2592 cbvmovw 2596 cbvmow 2597 axextg 2704 reu6 3700 reu7 3706 reu8nf 3843 disjxun 5108 solin 5576 cbviotaw 6474 cbviota 6476 dff13f 7233 poxp 8110 poxp2 8125 poxp3 8132 unxpdomlem1 9204 unxpdomlem2 9205 aceq0 10078 zfac 10420 axrepndlem1 10552 zfcndac 10579 injresinj 13756 fsum2dlem 15743 ramub1lem2 17005 ramcl 17007 symgextf1 19358 mamulid 22335 mamurid 22336 mdetdiagid 22494 mdetunilem9 22514 alexsubALTlem3 23943 ptcmplem2 23947 dscmet 24467 dyadmbllem 25507 opnmbllem 25509 isppw2 27032 2sqreulem1 27364 2sqreunnlem1 27367 frgr2wwlk1 30265 disji2f 32513 disjif2 32517 cbvmodavw 36245 cbvsbdavw 36249 cbvsbdavw2 36250 bj-ssblem1 36649 bj-ssblem2 36650 cbveud 37367 wl-naevhba1v 37515 wl-equsb3 37551 mblfinlem1 37658 bfp 37825 dveeq1-o 38935 dveeq1-o16 38936 axc11n-16 38938 ax12eq 38941 aks6d1c6lem3 42167 aks6d1c7 42179 fsuppind 42585 eu6w 42671 fphpd 42811 ax6e2nd 44555 ax6e2ndVD 44904 ax6e2ndALT 44926 disjinfi 45193 iundjiun 46465 hspdifhsp 46621 hspmbl 46634 2reu8i 47118 2reuimp0 47119 ichexmpl1 47474 lcoss 48429 |
| Copyright terms: Public domain | W3C validator |