Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equequ1 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
Ref | Expression |
---|---|
equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7 2024 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | equtr 2029 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
3 | 1, 2 | impbid 215 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 |
This theorem is referenced by: equvinv 2037 equvelv 2039 spaev 2058 sbjust 2069 equsb3 2105 sbievg 2362 drsb1 2498 mo4 2565 sb8eulem 2597 cbvmovw 2601 cbvmow 2602 axextg 2710 reu6 3639 reu7 3645 reu8nf 3789 disjxun 5051 solin 5493 cbviotaw 6345 cbviota 6348 dff13f 7068 poxp 7895 unxpdomlem1 8882 unxpdomlem2 8883 aceq0 9732 zfac 10074 axrepndlem1 10206 zfcndac 10233 injresinj 13363 fsum2dlem 15334 ramub1lem2 16580 ramcl 16582 symgextf1 18813 mamulid 21338 mamurid 21339 mdetdiagid 21497 mdetunilem9 21517 alexsubALTlem3 22946 ptcmplem2 22950 dscmet 23470 dyadmbllem 24496 opnmbllem 24498 isppw2 25997 2sqreulem1 26327 2sqreunnlem1 26330 frgr2wwlk1 28412 disji2f 30635 disjif2 30639 poxp2 33527 poxp3 33533 bj-ssblem1 34572 bj-ssblem2 34573 cbveud 35280 wl-naevhba1v 35416 wl-equsb3 35448 mblfinlem1 35551 bfp 35719 dveeq1-o 36686 dveeq1-o16 36687 axc11n-16 36689 ax12eq 36692 fsuppind 39989 mhphf 39995 fphpd 40341 ax6e2nd 41851 ax6e2ndVD 42201 ax6e2ndALT 42223 disjinfi 42404 iundjiun 43673 hspdifhsp 43829 hspmbl 43842 2reu8i 44277 2reuimp0 44278 ichexmpl1 44594 lcoss 45450 |
Copyright terms: Public domain | W3C validator |