Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equequ1 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
Ref | Expression |
---|---|
equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7 2019 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | equtr 2024 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
3 | 1, 2 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: equvinv 2032 equvelv 2034 spaev 2055 sbjust 2066 equsb3 2101 sbievg 2361 drsb1 2499 mo4 2566 sb8eulem 2598 cbvmovw 2602 cbvmow 2603 axextg 2711 reu6 3661 reu7 3667 reu8nf 3810 disjxun 5072 solin 5528 cbviotaw 6398 cbviota 6401 dff13f 7129 poxp 7969 unxpdomlem1 9027 unxpdomlem2 9028 aceq0 9874 zfac 10216 axrepndlem1 10348 zfcndac 10375 injresinj 13508 fsum2dlem 15482 ramub1lem2 16728 ramcl 16730 symgextf1 19029 mamulid 21590 mamurid 21591 mdetdiagid 21749 mdetunilem9 21769 alexsubALTlem3 23200 ptcmplem2 23204 dscmet 23728 dyadmbllem 24763 opnmbllem 24765 isppw2 26264 2sqreulem1 26594 2sqreunnlem1 26597 frgr2wwlk1 28693 disji2f 30916 disjif2 30920 poxp2 33790 poxp3 33796 bj-ssblem1 34835 bj-ssblem2 34836 cbveud 35543 wl-naevhba1v 35679 wl-equsb3 35711 mblfinlem1 35814 bfp 35982 dveeq1-o 36949 dveeq1-o16 36950 axc11n-16 36952 ax12eq 36955 fsuppind 40279 mhphf 40285 fphpd 40638 ax6e2nd 42178 ax6e2ndVD 42528 ax6e2ndALT 42550 disjinfi 42731 iundjiun 43998 hspdifhsp 44154 hspmbl 44167 2reu8i 44605 2reuimp0 44606 ichexmpl1 44921 lcoss 45777 |
Copyright terms: Public domain | W3C validator |