| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ1 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
| Ref | Expression |
|---|---|
| equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7 2017 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
| 2 | equtr 2022 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: equvinv 2030 equvelv 2032 spaev 2055 sbjust 2066 equsb3 2106 cbvsbvf 2363 drsb1 2495 mo4 2561 sb8eulem 2593 cbvmovw 2597 cbvmow 2598 axextg 2705 reu6 3685 reu7 3691 reu8nf 3828 disjxun 5089 solin 5551 cbviotaw 6444 cbviota 6446 dff13f 7189 poxp 8058 poxp2 8073 poxp3 8080 unxpdomlem1 9140 unxpdomlem2 9141 aceq0 10006 zfac 10348 axrepndlem1 10480 zfcndac 10507 injresinj 13688 fsum2dlem 15674 ramub1lem2 16936 ramcl 16938 symgextf1 19331 mamulid 22354 mamurid 22355 mdetdiagid 22513 mdetunilem9 22533 alexsubALTlem3 23962 ptcmplem2 23966 dscmet 24485 dyadmbllem 25525 opnmbllem 25527 isppw2 27050 2sqreulem1 27382 2sqreunnlem1 27385 frgr2wwlk1 30304 disji2f 32552 disjif2 32556 cbvmodavw 36283 cbvsbdavw 36287 cbvsbdavw2 36288 bj-ssblem1 36687 bj-ssblem2 36688 cbveud 37405 wl-naevhba1v 37553 wl-equsb3 37589 mblfinlem1 37696 bfp 37863 dveeq1-o 38973 dveeq1-o16 38974 axc11n-16 38976 ax12eq 38979 aks6d1c6lem3 42204 aks6d1c7 42216 fsuppind 42622 eu6w 42708 fphpd 42848 ax6e2nd 44590 ax6e2ndVD 44939 ax6e2ndALT 44961 disjinfi 45228 iundjiun 46497 hspdifhsp 46653 hspmbl 46666 2reu8i 47143 2reuimp0 47144 ichexmpl1 47499 lcoss 48467 |
| Copyright terms: Public domain | W3C validator |