| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ1 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
| Ref | Expression |
|---|---|
| equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7 2016 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
| 2 | equtr 2021 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equvinv 2029 equvelv 2031 spaev 2053 sbjust 2064 equsb3 2104 cbvsbvf 2366 drsb1 2500 mo4 2566 sb8eulem 2598 cbvmovw 2602 cbvmow 2603 axextg 2710 reu6 3714 reu7 3720 reu8nf 3857 disjxun 5122 solin 5593 cbviotaw 6496 cbviota 6498 dff13f 7253 poxp 8132 poxp2 8147 poxp3 8154 unxpdomlem1 9263 unxpdomlem2 9264 aceq0 10137 zfac 10479 axrepndlem1 10611 zfcndac 10638 injresinj 13809 fsum2dlem 15791 ramub1lem2 17052 ramcl 17054 symgextf1 19407 mamulid 22384 mamurid 22385 mdetdiagid 22543 mdetunilem9 22563 alexsubALTlem3 23992 ptcmplem2 23996 dscmet 24516 dyadmbllem 25557 opnmbllem 25559 isppw2 27082 2sqreulem1 27414 2sqreunnlem1 27417 frgr2wwlk1 30315 disji2f 32563 disjif2 32567 cbvmodavw 36273 cbvsbdavw 36277 cbvsbdavw2 36278 bj-ssblem1 36677 bj-ssblem2 36678 cbveud 37395 wl-naevhba1v 37543 wl-equsb3 37579 mblfinlem1 37686 bfp 37853 dveeq1-o 38958 dveeq1-o16 38959 axc11n-16 38961 ax12eq 38964 aks6d1c6lem3 42190 aks6d1c7 42202 fsuppind 42588 eu6w 42674 fphpd 42814 ax6e2nd 44558 ax6e2ndVD 44907 ax6e2ndALT 44929 disjinfi 45196 iundjiun 46469 hspdifhsp 46625 hspmbl 46638 2reu8i 47122 2reuimp0 47123 ichexmpl1 47463 lcoss 48392 |
| Copyright terms: Public domain | W3C validator |