| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ1 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
| Ref | Expression |
|---|---|
| equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7 2016 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
| 2 | equtr 2021 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equvinv 2029 equvelv 2031 spaev 2053 sbjust 2064 equsb3 2104 cbvsbvf 2361 drsb1 2493 mo4 2559 sb8eulem 2591 cbvmovw 2595 cbvmow 2596 axextg 2703 reu6 3697 reu7 3703 reu8nf 3840 disjxun 5105 solin 5573 cbviotaw 6471 cbviota 6473 dff13f 7230 poxp 8107 poxp2 8122 poxp3 8129 unxpdomlem1 9197 unxpdomlem2 9198 aceq0 10071 zfac 10413 axrepndlem1 10545 zfcndac 10572 injresinj 13749 fsum2dlem 15736 ramub1lem2 16998 ramcl 17000 symgextf1 19351 mamulid 22328 mamurid 22329 mdetdiagid 22487 mdetunilem9 22507 alexsubALTlem3 23936 ptcmplem2 23940 dscmet 24460 dyadmbllem 25500 opnmbllem 25502 isppw2 27025 2sqreulem1 27357 2sqreunnlem1 27360 frgr2wwlk1 30258 disji2f 32506 disjif2 32510 cbvmodavw 36238 cbvsbdavw 36242 cbvsbdavw2 36243 bj-ssblem1 36642 bj-ssblem2 36643 cbveud 37360 wl-naevhba1v 37508 wl-equsb3 37544 mblfinlem1 37651 bfp 37818 dveeq1-o 38928 dveeq1-o16 38929 axc11n-16 38931 ax12eq 38934 aks6d1c6lem3 42160 aks6d1c7 42172 fsuppind 42578 eu6w 42664 fphpd 42804 ax6e2nd 44548 ax6e2ndVD 44897 ax6e2ndALT 44919 disjinfi 45186 iundjiun 46458 hspdifhsp 46614 hspmbl 46627 2reu8i 47114 2reuimp0 47115 ichexmpl1 47470 lcoss 48425 |
| Copyright terms: Public domain | W3C validator |