| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equequ1 | Structured version Visualization version GIF version | ||
| Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
| Ref | Expression |
|---|---|
| equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax7 2016 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
| 2 | equtr 2021 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equvinv 2029 equvelv 2031 spaev 2053 sbjust 2064 equsb3 2104 cbvsbvf 2361 drsb1 2493 mo4 2559 sb8eulem 2591 cbvmovw 2595 cbvmow 2596 axextg 2703 reu6 3688 reu7 3694 reu8nf 3831 disjxun 5093 solin 5558 cbviotaw 6449 cbviota 6451 dff13f 7196 poxp 8068 poxp2 8083 poxp3 8090 unxpdomlem1 9155 unxpdomlem2 9156 aceq0 10031 zfac 10373 axrepndlem1 10505 zfcndac 10532 injresinj 13709 fsum2dlem 15695 ramub1lem2 16957 ramcl 16959 symgextf1 19318 mamulid 22344 mamurid 22345 mdetdiagid 22503 mdetunilem9 22523 alexsubALTlem3 23952 ptcmplem2 23956 dscmet 24476 dyadmbllem 25516 opnmbllem 25518 isppw2 27041 2sqreulem1 27373 2sqreunnlem1 27376 frgr2wwlk1 30291 disji2f 32539 disjif2 32543 cbvmodavw 36223 cbvsbdavw 36227 cbvsbdavw2 36228 bj-ssblem1 36627 bj-ssblem2 36628 cbveud 37345 wl-naevhba1v 37493 wl-equsb3 37529 mblfinlem1 37636 bfp 37803 dveeq1-o 38913 dveeq1-o16 38914 axc11n-16 38916 ax12eq 38919 aks6d1c6lem3 42145 aks6d1c7 42157 fsuppind 42563 eu6w 42649 fphpd 42789 ax6e2nd 44532 ax6e2ndVD 44881 ax6e2ndALT 44903 disjinfi 45170 iundjiun 46442 hspdifhsp 46598 hspmbl 46611 2reu8i 47098 2reuimp0 47099 ichexmpl1 47454 lcoss 48422 |
| Copyright terms: Public domain | W3C validator |