![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equequ1 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
Ref | Expression |
---|---|
equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7 2000 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | equtr 2005 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
3 | 1, 2 | impbid 213 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 |
This theorem is referenced by: equvinv 2013 equvelv 2015 spaev 2028 sbjust 2041 equsb3 2076 drsb1 2489 mo4 2607 sb8eulem 2650 axextg 2771 reu6 3654 reu7 3660 reu8nf 3792 disjxun 4964 cbviota 6199 dff13f 6884 poxp 7680 unxpdomlem1 8573 unxpdomlem2 8574 aceq0 9395 zfac 9733 axrepndlem1 9865 zfcndac 9892 injresinj 13013 fsum2dlem 14963 ramub1lem2 16197 ramcl 16199 symgextf1 18285 mamulid 20739 mamurid 20740 mdetdiagid 20898 mdetunilem9 20918 alexsubALTlem3 22346 ptcmplem2 22350 dscmet 22870 dyadmbllem 23888 opnmbllem 23890 isppw2 25379 2sqreulem1 25709 2sqreunnlem1 25712 frgr2wwlk1 27805 disji2f 30022 disjif2 30026 bj-ssblem1 33595 bj-ssblem2 33596 cbveud 34209 wl-naevhba1v 34318 wl-equsb3 34348 mblfinlem1 34485 bfp 34659 dveeq1-o 35627 dveeq1-o16 35628 axc11n-16 35630 ax12eq 35633 fphpd 38923 ax6e2nd 40456 ax6e2ndVD 40806 ax6e2ndALT 40828 disjinfi 41019 iundjiun 42310 hspdifhsp 42466 hspmbl 42479 2reu8i 42854 2reuimp0 42855 ichexmpl1 43139 lcoss 43997 |
Copyright terms: Public domain | W3C validator |