Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equequ1 | Structured version Visualization version GIF version |
Description: An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
Ref | Expression |
---|---|
equequ1 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7 2020 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | |
2 | equtr 2025 | . 2 ⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | |
3 | 1, 2 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: equvinv 2033 equvelv 2035 spaev 2056 sbjust 2067 equsb3 2103 sbievg 2361 drsb1 2499 mo4 2566 sb8eulem 2598 cbvmovw 2602 cbvmow 2603 axextg 2711 reu6 3656 reu7 3662 reu8nf 3806 disjxun 5068 solin 5519 cbviotaw 6383 cbviota 6386 dff13f 7110 poxp 7940 unxpdomlem1 8956 unxpdomlem2 8957 aceq0 9805 zfac 10147 axrepndlem1 10279 zfcndac 10306 injresinj 13436 fsum2dlem 15410 ramub1lem2 16656 ramcl 16658 symgextf1 18944 mamulid 21498 mamurid 21499 mdetdiagid 21657 mdetunilem9 21677 alexsubALTlem3 23108 ptcmplem2 23112 dscmet 23634 dyadmbllem 24668 opnmbllem 24670 isppw2 26169 2sqreulem1 26499 2sqreunnlem1 26502 frgr2wwlk1 28594 disji2f 30817 disjif2 30821 poxp2 33717 poxp3 33723 bj-ssblem1 34762 bj-ssblem2 34763 cbveud 35470 wl-naevhba1v 35606 wl-equsb3 35638 mblfinlem1 35741 bfp 35909 dveeq1-o 36876 dveeq1-o16 36877 axc11n-16 36879 ax12eq 36882 fsuppind 40202 mhphf 40208 fphpd 40554 ax6e2nd 42067 ax6e2ndVD 42417 ax6e2ndALT 42439 disjinfi 42620 iundjiun 43888 hspdifhsp 44044 hspmbl 44057 2reu8i 44492 2reuimp0 44493 ichexmpl1 44809 lcoss 45665 |
Copyright terms: Public domain | W3C validator |