Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvrabdavw Structured version   Visualization version   GIF version

Theorem cbvrabdavw 36219
Description: Change bound variable in restricted class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvrabdavw.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvrabdavw (𝜑 → {𝑥𝐴𝜓} = {𝑦𝐴𝜒})
Distinct variable groups:   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvrabdavw
StepHypRef Expression
1 eleq1w 2827 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
21adantl 481 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
3 cbvrabdavw.1 . . . 4 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
42, 3anbi12d 631 . . 3 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴𝜓) ↔ (𝑦𝐴𝜒)))
54cbvabdavw 36214 . 2 (𝜑 → {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑦 ∣ (𝑦𝐴𝜒)})
6 df-rab 3444 . 2 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
7 df-rab 3444 . 2 {𝑦𝐴𝜒} = {𝑦 ∣ (𝑦𝐴𝜒)}
85, 6, 73eqtr4g 2805 1 (𝜑 → {𝑥𝐴𝜓} = {𝑦𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  {crab 3443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator