Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvcsbdavw2 Structured version   Visualization version   GIF version

Theorem cbvcsbdavw2 36218
Description: Change bound variable of a proper substitution into a class. General version of cbvcsbdavw 36217. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvcsbdavw2.1 (𝜑𝐴 = 𝐵)
cbvcsbdavw2.2 ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)
Assertion
Ref Expression
cbvcsbdavw2 (𝜑𝐴 / 𝑥𝐶 = 𝐵 / 𝑦𝐷)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbvcsbdavw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cbvcsbdavw2.1 . . . 4 (𝜑𝐴 = 𝐵)
2 cbvcsbdavw2.2 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)
32eleq2d 2830 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑡𝐶𝑡𝐷))
41, 3cbvsbcdavw2 36216 . . 3 (𝜑 → ([𝐴 / 𝑥]𝑡𝐶[𝐵 / 𝑦]𝑡𝐷))
54abbidv 2811 . 2 (𝜑 → {𝑡[𝐴 / 𝑥]𝑡𝐶} = {𝑡[𝐵 / 𝑦]𝑡𝐷})
6 df-csb 3922 . 2 𝐴 / 𝑥𝐶 = {𝑡[𝐴 / 𝑥]𝑡𝐶}
7 df-csb 3922 . 2 𝐵 / 𝑦𝐷 = {𝑡[𝐵 / 𝑦]𝑡𝐷}
85, 6, 73eqtr4g 2805 1 (𝜑𝐴 / 𝑥𝐶 = 𝐵 / 𝑦𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  [wsbc 3804  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805  df-csb 3922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator