Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleq1w | Structured version Visualization version GIF version |
Description: Weaker version of eleq1 2826 (but more general than elequ1 2113) not
depending on ax-ext 2709 nor df-cleq 2730.
Note that this provides a proof of ax-8 2108 from Tarski's FOL and dfclel 2817 (simply consider an instance where 𝐴 is replaced by a setvar and deduce the forward implication by biimpd 228), which shows that dfclel 2817 is too powerful to be used as a definition instead of df-clel 2816. (Contributed by BJ, 24-Jun-2019.) |
Ref | Expression |
---|---|
eleq1w | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 2029 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) | |
2 | 1 | anbi1d 630 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝑥 ∧ 𝑧 ∈ 𝐴) ↔ (𝑧 = 𝑦 ∧ 𝑧 ∈ 𝐴))) |
3 | 2 | exbidv 1924 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝐴) ↔ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 ∈ 𝐴))) |
4 | dfclel 2817 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝐴)) | |
5 | dfclel 2817 | . 2 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 ∈ 𝐴)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
Copyright terms: Public domain | W3C validator |