| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvabdavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvabdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvabdavw | ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑦 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvabdavw.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | cbvsbdavw 36237 | . . 3 ⊢ (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑦]𝜒)) |
| 3 | df-clab 2709 | . . 3 ⊢ (𝑡 ∈ {𝑥 ∣ 𝜓} ↔ [𝑡 / 𝑥]𝜓) | |
| 4 | df-clab 2709 | . . 3 ⊢ (𝑡 ∈ {𝑦 ∣ 𝜒} ↔ [𝑡 / 𝑦]𝜒) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑡 ∈ {𝑥 ∣ 𝜓} ↔ 𝑡 ∈ {𝑦 ∣ 𝜒})) |
| 6 | 5 | eqrdv 2728 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑦 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 |
| This theorem is referenced by: cbvsbcdavw 36240 cbvsbcdavw2 36241 cbvrabdavw 36244 cbviotadavw 36252 cbvixpdavw 36261 cbvrabdavw2 36268 cbvixpdavw2 36277 |
| Copyright terms: Public domain | W3C validator |