![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvditgdavw | Structured version Visualization version GIF version |
Description: Change bound variable in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvditgdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
cbvditgdavw | ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvditgdavw.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) | |
2 | 1 | cbvitgdavw 36224 | . . 3 ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐷 d𝑦) |
3 | 1 | cbvitgdavw 36224 | . . . 4 ⊢ (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐷 d𝑦) |
4 | 3 | negeqd 11493 | . . 3 ⊢ (𝜑 → -∫(𝐵(,)𝐴)𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐷 d𝑦) |
5 | 2, 4 | ifeq12d 4551 | . 2 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦)) |
6 | df-ditg 25878 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
7 | df-ditg 25878 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐷 d𝑦 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦) | |
8 | 5, 6, 7 | 3eqtr4g 2798 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1535 ifcif 4530 class class class wbr 5149 (class class class)co 7425 ≤ cle 11287 -cneg 11484 (,)cioo 13377 ∫citg 25648 ⨜cdit 25877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-opab 5212 df-mpt 5233 df-xp 5689 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6317 df-iota 6510 df-fv 6566 df-ov 7428 df-oprab 7429 df-mpo 7430 df-frecs 8299 df-wrecs 8330 df-recs 8404 df-rdg 8443 df-neg 11486 df-seq 14029 df-sum 15709 df-itg 25653 df-ditg 25878 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |