![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvditgdavw | Structured version Visualization version GIF version |
Description: Change bound variable in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvditgdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
cbvditgdavw | ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvditgdavw.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) | |
2 | 1 | cbvitgdavw 36260 | . . 3 ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐷 d𝑦) |
3 | 1 | cbvitgdavw 36260 | . . . 4 ⊢ (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐷 d𝑦) |
4 | 3 | negeqd 11498 | . . 3 ⊢ (𝜑 → -∫(𝐵(,)𝐴)𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐷 d𝑦) |
5 | 2, 4 | ifeq12d 4545 | . 2 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦)) |
6 | df-ditg 25872 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
7 | df-ditg 25872 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐷 d𝑦 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦) | |
8 | 5, 6, 7 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ifcif 4524 class class class wbr 5141 (class class class)co 7429 ≤ cle 11292 -cneg 11489 (,)cioo 13383 ∫citg 25643 ⨜cdit 25871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-mpt 5224 df-xp 5689 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-iota 6512 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-neg 11491 df-seq 14039 df-sum 15719 df-itg 25648 df-ditg 25872 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |