Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvditgdavw Structured version   Visualization version   GIF version

Theorem cbvditgdavw 36240
Description: Change bound variable in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvditgdavw.1 ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)
Assertion
Ref Expression
cbvditgdavw (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ⨜[𝐴𝐵]𝐷 d𝑦)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbvditgdavw
StepHypRef Expression
1 cbvditgdavw.1 . . . 4 ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)
21cbvitgdavw 36239 . . 3 (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐷 d𝑦)
31cbvitgdavw 36239 . . . 4 (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐷 d𝑦)
43negeqd 11524 . . 3 (𝜑 → -∫(𝐵(,)𝐴)𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐷 d𝑦)
52, 4ifeq12d 4569 . 2 (𝜑 → if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦))
6 df-ditg 25894 . 2 ⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
7 df-ditg 25894 . 2 ⨜[𝐴𝐵]𝐷 d𝑦 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦)
85, 6, 73eqtr4g 2805 1 (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ⨜[𝐴𝐵]𝐷 d𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  ifcif 4548   class class class wbr 5166  (class class class)co 7443  cle 11319  -cneg 11515  (,)cioo 13401  citg 25664  cdit 25893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5701  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-pred 6327  df-iota 6520  df-fv 6576  df-ov 7446  df-oprab 7447  df-mpo 7448  df-frecs 8316  df-wrecs 8347  df-recs 8421  df-rdg 8460  df-neg 11517  df-seq 14047  df-sum 15729  df-itg 25669  df-ditg 25894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator