Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvditgdavw Structured version   Visualization version   GIF version

Theorem cbvditgdavw 36265
Description: Change bound variable in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvditgdavw.1 ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)
Assertion
Ref Expression
cbvditgdavw (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ⨜[𝐴𝐵]𝐷 d𝑦)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbvditgdavw
StepHypRef Expression
1 cbvditgdavw.1 . . . 4 ((𝜑𝑥 = 𝑦) → 𝐶 = 𝐷)
21cbvitgdavw 36264 . . 3 (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐷 d𝑦)
31cbvitgdavw 36264 . . . 4 (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐷 d𝑦)
43negeqd 11421 . . 3 (𝜑 → -∫(𝐵(,)𝐴)𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐷 d𝑦)
52, 4ifeq12d 4512 . 2 (𝜑 → if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦))
6 df-ditg 25754 . 2 ⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
7 df-ditg 25754 . 2 ⨜[𝐴𝐵]𝐷 d𝑦 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦)
85, 6, 73eqtr4g 2790 1 (𝜑 → ⨜[𝐴𝐵]𝐶 d𝑥 = ⨜[𝐴𝐵]𝐷 d𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  ifcif 4490   class class class wbr 5109  (class class class)co 7389  cle 11215  -cneg 11412  (,)cioo 13312  citg 25525  cdit 25753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-xp 5646  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-iota 6466  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-neg 11414  df-seq 13973  df-sum 15659  df-itg 25530  df-ditg 25754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator