| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvditgdavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in a directed integral. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvditgdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvditgdavw | ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvditgdavw.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) | |
| 2 | 1 | cbvitgdavw 36220 | . . 3 ⊢ (𝜑 → ∫(𝐴(,)𝐵)𝐶 d𝑥 = ∫(𝐴(,)𝐵)𝐷 d𝑦) |
| 3 | 1 | cbvitgdavw 36220 | . . . 4 ⊢ (𝜑 → ∫(𝐵(,)𝐴)𝐶 d𝑥 = ∫(𝐵(,)𝐴)𝐷 d𝑦) |
| 4 | 3 | negeqd 11468 | . . 3 ⊢ (𝜑 → -∫(𝐵(,)𝐴)𝐶 d𝑥 = -∫(𝐵(,)𝐴)𝐷 d𝑦) |
| 5 | 2, 4 | ifeq12d 4520 | . 2 ⊢ (𝜑 → if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦)) |
| 6 | df-ditg 25785 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) | |
| 7 | df-ditg 25785 | . 2 ⊢ ⨜[𝐴 → 𝐵]𝐷 d𝑦 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐷 d𝑦, -∫(𝐵(,)𝐴)𝐷 d𝑦) | |
| 8 | 5, 6, 7 | 3eqtr4g 2794 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐵]𝐶 d𝑥 = ⨜[𝐴 → 𝐵]𝐷 d𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ifcif 4498 class class class wbr 5116 (class class class)co 7399 ≤ cle 11262 -cneg 11459 (,)cioo 13353 ∫citg 25556 ⨜cdit 25784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-xp 5657 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-iota 6480 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-neg 11461 df-seq 14009 df-sum 15690 df-itg 25561 df-ditg 25785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |