![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvrmovw2 | Structured version Visualization version GIF version |
Description: Change bound variable and domain in the restricted at-most-one quantifier, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvrmovw2.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
cbvrmovw2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrmovw2 | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2820 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | cbvrmovw2.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
3 | 2 | eleq2d 2823 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
4 | 1, 3 | bitrd 279 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
5 | cbvrmovw2.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ 𝜓))) |
7 | 6 | cbvmovw 2598 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑦(𝑦 ∈ 𝐵 ∧ 𝜓)) |
8 | df-rmo 3376 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
9 | df-rmo 3376 | . 2 ⊢ (∃*𝑦 ∈ 𝐵 𝜓 ↔ ∃*𝑦(𝑦 ∈ 𝐵 ∧ 𝜓)) | |
10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1535 ∈ wcel 2104 ∃*wmo 2534 ∃*wrmo 3375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1775 df-mo 2536 df-cleq 2725 df-clel 2812 df-rmo 3376 |
This theorem is referenced by: cbvdisjvw2 36178 |
Copyright terms: Public domain | W3C validator |