Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvmovw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvmo 2606 and cbvmow 2604 for versions with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Mar-1995.) (Revised by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
cbvmovw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvmovw | ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvmovw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | equequ1 2033 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | |
3 | 1, 2 | imbi12d 348 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝑥 = 𝑧) ↔ (𝜓 → 𝑦 = 𝑧))) |
4 | 3 | cbvalvw 2044 | . . 3 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∀𝑦(𝜓 → 𝑦 = 𝑧)) |
5 | 4 | exbii 1855 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
6 | df-mo 2541 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) | |
7 | df-mo 2541 | . 2 ⊢ (∃*𝑦𝜓 ↔ ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) | |
8 | 5, 6, 7 | 3bitr4i 306 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1541 ∃wex 1787 ∃*wmo 2539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-mo 2541 |
This theorem is referenced by: cbveuvw 2607 cbvrmovw 3375 |
Copyright terms: Public domain | W3C validator |