| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmovw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvmo 2604 and cbvmow 2603 for versions with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Mar-1995.) (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| cbvmovw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvmovw | ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmovw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | equequ1 2024 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | |
| 3 | 1, 2 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝑥 = 𝑧) ↔ (𝜓 → 𝑦 = 𝑧))) |
| 4 | 3 | cbvalvw 2035 | . . 3 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∀𝑦(𝜓 → 𝑦 = 𝑧)) |
| 5 | 4 | exbii 1848 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) |
| 6 | df-mo 2540 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) | |
| 7 | df-mo 2540 | . 2 ⊢ (∃*𝑦𝜓 ↔ ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 ∃*wmo 2538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 |
| This theorem is referenced by: cbveuvw 2605 cbvrmovw 3403 cbvrmovw2 36229 |
| Copyright terms: Public domain | W3C validator |