Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvdisjvw2 Structured version   Visualization version   GIF version

Theorem cbvdisjvw2 36193
Description: Change bound variable and domain in a disjoint collection, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvdisjvw2.1 (𝑥 = 𝑦𝐶 = 𝐷)
cbvdisjvw2.2 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
cbvdisjvw2 (Disj 𝑥𝐴 𝐶Disj 𝑦𝐵 𝐷)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbvdisjvw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cbvdisjvw2.2 . . . 4 (𝑥 = 𝑦𝐴 = 𝐵)
2 cbvdisjvw2.1 . . . . 5 (𝑥 = 𝑦𝐶 = 𝐷)
32eleq2d 2830 . . . 4 (𝑥 = 𝑦 → (𝑡𝐶𝑡𝐷))
41, 3cbvrmovw2 36186 . . 3 (∃*𝑥𝐴 𝑡𝐶 ↔ ∃*𝑦𝐵 𝑡𝐷)
54albii 1817 . 2 (∀𝑡∃*𝑥𝐴 𝑡𝐶 ↔ ∀𝑡∃*𝑦𝐵 𝑡𝐷)
6 df-disj 5134 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑡∃*𝑥𝐴 𝑡𝐶)
7 df-disj 5134 . 2 (Disj 𝑦𝐵 𝐷 ↔ ∀𝑡∃*𝑦𝐵 𝑡𝐷)
85, 6, 73bitr4i 303 1 (Disj 𝑥𝐴 𝐶Disj 𝑦𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2108  ∃*wrmo 3387  Disj wdisj 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-cleq 2732  df-clel 2819  df-rmo 3388  df-disj 5134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator