Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvsbcdavw Structured version   Visualization version   GIF version

Theorem cbvsbcdavw 36240
Description: Change bound variable of a class substitution. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvsbcdavw.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvsbcdavw (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑦]𝜒))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvsbcdavw
StepHypRef Expression
1 cbvsbcdavw.1 . . . 4 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
21cbvabdavw 36239 . . 3 (𝜑 → {𝑥𝜓} = {𝑦𝜒})
32eleq2d 2815 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝐴 ∈ {𝑦𝜒}))
4 df-sbc 3756 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
5 df-sbc 3756 . 2 ([𝐴 / 𝑦]𝜒𝐴 ∈ {𝑦𝜒})
63, 4, 53bitr4g 314 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑦]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {cab 2708  [wsbc 3755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-sbc 3756
This theorem is referenced by:  cbvcsbdavw  36242
  Copyright terms: Public domain W3C validator