Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvsbcdavw2 Structured version   Visualization version   GIF version

Theorem cbvsbcdavw2 36216
Description: Change bound variable of a class substitution. General version of cbvsbcdavw 36215. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvsbcdavw2.1 (𝜑𝐴 = 𝐵)
cbvsbcdavw2.2 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvsbcdavw2 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑦]𝜒))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem cbvsbcdavw2
StepHypRef Expression
1 cbvsbcdavw2.1 . . 3 (𝜑𝐴 = 𝐵)
2 cbvsbcdavw2.2 . . . 4 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
32cbvabdavw 36214 . . 3 (𝜑 → {𝑥𝜓} = {𝑦𝜒})
41, 3eleq12d 2838 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝐵 ∈ {𝑦𝜒}))
5 df-sbc 3805 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
6 df-sbc 3805 . 2 ([𝐵 / 𝑦]𝜒𝐵 ∈ {𝑦𝜒})
74, 5, 63bitr4g 314 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑦]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805
This theorem is referenced by:  cbvcsbdavw2  36218
  Copyright terms: Public domain W3C validator