![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvsbcdavw2 | Structured version Visualization version GIF version |
Description: Change bound variable of a class substitution. General version of cbvsbcdavw 36215. Deduction form. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvsbcdavw2.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
cbvsbcdavw2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
cbvsbcdavw2 | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑦]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbcdavw2.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | cbvsbcdavw2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
3 | 2 | cbvabdavw 36214 | . . 3 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑦 ∣ 𝜒}) |
4 | 1, 3 | eleq12d 2838 | . 2 ⊢ (𝜑 → (𝐴 ∈ {𝑥 ∣ 𝜓} ↔ 𝐵 ∈ {𝑦 ∣ 𝜒})) |
5 | df-sbc 3805 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
6 | df-sbc 3805 | . 2 ⊢ ([𝐵 / 𝑦]𝜒 ↔ 𝐵 ∈ {𝑦 ∣ 𝜒}) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑦]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: cbvcsbdavw2 36218 |
Copyright terms: Public domain | W3C validator |