Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvcsbdavw Structured version   Visualization version   GIF version

Theorem cbvcsbdavw 36198
Description: Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvcsbdavw.1 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
Assertion
Ref Expression
cbvcsbdavw (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvcsbdavw
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cbvcsbdavw.1 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
21eleq2d 2819 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑡𝐵𝑡𝐶))
32cbvsbcdavw 36196 . . 3 (𝜑 → ([𝐴 / 𝑥]𝑡𝐵[𝐴 / 𝑦]𝑡𝐶))
43abbidv 2800 . 2 (𝜑 → {𝑡[𝐴 / 𝑥]𝑡𝐵} = {𝑡[𝐴 / 𝑦]𝑡𝐶})
5 df-csb 3873 . 2 𝐴 / 𝑥𝐵 = {𝑡[𝐴 / 𝑥]𝑡𝐵}
6 df-csb 3873 . 2 𝐴 / 𝑦𝐶 = {𝑡[𝐴 / 𝑦]𝑡𝐶}
74, 5, 63eqtr4g 2794 1 (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  [wsbc 3763  csb 3872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-sbc 3764  df-csb 3873
This theorem is referenced by:  cbvsumdavw  36218  cbvproddavw  36219  cbvsumdavw2  36234  cbvproddavw2  36235
  Copyright terms: Public domain W3C validator