![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvcsbdavw | Structured version Visualization version GIF version |
Description: Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvcsbdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvcsbdavw | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcsbdavw.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) | |
2 | 1 | eleq2d 2826 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑡 ∈ 𝐵 ↔ 𝑡 ∈ 𝐶)) |
3 | 2 | cbvsbcdavw 36236 | . . 3 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑡 ∈ 𝐵 ↔ [𝐴 / 𝑦]𝑡 ∈ 𝐶)) |
4 | 3 | abbidv 2807 | . 2 ⊢ (𝜑 → {𝑡 ∣ [𝐴 / 𝑥]𝑡 ∈ 𝐵} = {𝑡 ∣ [𝐴 / 𝑦]𝑡 ∈ 𝐶}) |
5 | df-csb 3899 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑡 ∣ [𝐴 / 𝑥]𝑡 ∈ 𝐵} | |
6 | df-csb 3899 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐶 = {𝑡 ∣ [𝐴 / 𝑦]𝑡 ∈ 𝐶} | |
7 | 4, 5, 6 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 [wsbc 3787 ⦋csb 3898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-sbc 3788 df-csb 3899 |
This theorem is referenced by: cbvsumdavw 36258 cbvproddavw 36259 cbvsumdavw2 36274 cbvproddavw2 36275 |
Copyright terms: Public domain | W3C validator |