Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvcsbdavw Structured version   Visualization version   GIF version

Theorem cbvcsbdavw 36293
Description: Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvcsbdavw.1 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
Assertion
Ref Expression
cbvcsbdavw (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶)
Distinct variable groups:   𝜑,𝑥,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvcsbdavw
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cbvcsbdavw.1 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
21eleq2d 2817 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑡𝐵𝑡𝐶))
32cbvsbcdavw 36291 . . 3 (𝜑 → ([𝐴 / 𝑥]𝑡𝐵[𝐴 / 𝑦]𝑡𝐶))
43abbidv 2797 . 2 (𝜑 → {𝑡[𝐴 / 𝑥]𝑡𝐵} = {𝑡[𝐴 / 𝑦]𝑡𝐶})
5 df-csb 3846 . 2 𝐴 / 𝑥𝐵 = {𝑡[𝐴 / 𝑥]𝑡𝐵}
6 df-csb 3846 . 2 𝐴 / 𝑦𝐶 = {𝑡[𝐴 / 𝑦]𝑡𝐶}
74, 5, 63eqtr4g 2791 1 (𝜑𝐴 / 𝑥𝐵 = 𝐴 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  [wsbc 3736  csb 3845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-sbc 3737  df-csb 3846
This theorem is referenced by:  cbvsumdavw  36313  cbvproddavw  36314  cbvsumdavw2  36329  cbvproddavw2  36330
  Copyright terms: Public domain W3C validator