| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvcsbdavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvcsbdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvcsbdavw | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvcsbdavw.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2817 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑡 ∈ 𝐵 ↔ 𝑡 ∈ 𝐶)) |
| 3 | 2 | cbvsbcdavw 36291 | . . 3 ⊢ (𝜑 → ([𝐴 / 𝑥]𝑡 ∈ 𝐵 ↔ [𝐴 / 𝑦]𝑡 ∈ 𝐶)) |
| 4 | 3 | abbidv 2797 | . 2 ⊢ (𝜑 → {𝑡 ∣ [𝐴 / 𝑥]𝑡 ∈ 𝐵} = {𝑡 ∣ [𝐴 / 𝑦]𝑡 ∈ 𝐶}) |
| 5 | df-csb 3846 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑡 ∣ [𝐴 / 𝑥]𝑡 ∈ 𝐵} | |
| 6 | df-csb 3846 | . 2 ⊢ ⦋𝐴 / 𝑦⦌𝐶 = {𝑡 ∣ [𝐴 / 𝑦]𝑡 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑦⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 [wsbc 3736 ⦋csb 3845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 df-csb 3846 |
| This theorem is referenced by: cbvsumdavw 36313 cbvproddavw 36314 cbvsumdavw2 36329 cbvproddavw2 36330 |
| Copyright terms: Public domain | W3C validator |