Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsalvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ceqsalv 3457 as of 8-Sep-2024. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ceqsalv.1 | ⊢ 𝐴 ∈ V |
ceqsalv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsalvOLD | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | ceqsalv.1 | . 2 ⊢ 𝐴 ∈ V | |
3 | ceqsalv.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | ceqsal 3456 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |