Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsralv Structured version   Visualization version   GIF version

Theorem ceqsralv 3450
 Description: Restricted quantifier version of ceqsalv 3449. (Contributed by NM, 21-Jun-2013.)
Hypothesis
Ref Expression
ceqsralv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsralv (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsralv
StepHypRef Expression
1 nfv 1916 . 2 𝑥𝜓
2 ceqsralv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32ax-gen 1798 . 2 𝑥(𝑥 = 𝐴 → (𝜑𝜓))
4 ceqsralt 3445 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝐵) → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
51, 3, 4mp3an12 1449 1 (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∀wal 1537   = wceq 1539  Ⅎwnf 1786   ∈ wcel 2112  ∀wral 3071 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-12 2176  ax-ext 2730 This theorem depends on definitions:  df-bi 210  df-an 401  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ral 3076 This theorem is referenced by:  eqreu  3644  sqrt2irr  15643  acsfn  16981  ovolgelb  24173  fsuppind  39777
 Copyright terms: Public domain W3C validator