MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsralv Structured version   Visualization version   GIF version

Theorem ceqsralv 3506
Description: Restricted quantifier version of ceqsalv 3504. (Contributed by NM, 21-Jun-2013.) Avoid ax-9 2108, ax-12 2163, ax-ext 2695. (Revised by SN, 8-Sep-2024.)
Hypothesis
Ref Expression
ceqsralv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsralv (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsralv
StepHypRef Expression
1 ceqsralv.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21pm5.74i 271 . . 3 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
32ralbii 3085 . 2 (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∀𝑥𝐵 (𝑥 = 𝐴𝜓))
4 r19.23v 3174 . . 3 (∀𝑥𝐵 (𝑥 = 𝐴𝜓) ↔ (∃𝑥𝐵 𝑥 = 𝐴𝜓))
5 risset 3222 . . . 4 (𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = 𝐴)
6 pm5.5 361 . . . 4 (∃𝑥𝐵 𝑥 = 𝐴 → ((∃𝑥𝐵 𝑥 = 𝐴𝜓) ↔ 𝜓))
75, 6sylbi 216 . . 3 (𝐴𝐵 → ((∃𝑥𝐵 𝑥 = 𝐴𝜓) ↔ 𝜓))
84, 7bitrid 283 . 2 (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜓) ↔ 𝜓))
93, 8bitrid 283 1 (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wral 3053  wrex 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-clel 2802  df-ral 3054  df-rex 3063
This theorem is referenced by:  eqreu  3717  sqrt2irr  16188  acsfn  17601  ovolgelb  25330  fsuppind  41617
  Copyright terms: Public domain W3C validator