Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsralv | Structured version Visualization version GIF version |
Description: Restricted quantifier version of ceqsalv 3467. (Contributed by NM, 21-Jun-2013.) Avoid ax-9 2116, ax-12 2171, ax-ext 2709. (Revised by SN, 8-Sep-2024.) |
Ref | Expression |
---|---|
ceqsralv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsralv | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsralv.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.74i 270 | . . 3 ⊢ ((𝑥 = 𝐴 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜓)) |
3 | 2 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜓)) |
4 | r19.23v 3208 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 → 𝜓)) | |
5 | risset 3194 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
6 | pm5.5 362 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 → ((∃𝑥 ∈ 𝐵 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) | |
7 | 5, 6 | sylbi 216 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ((∃𝑥 ∈ 𝐵 𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) |
8 | 4, 7 | bitrid 282 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜓) ↔ 𝜓)) |
9 | 3, 8 | bitrid 282 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clel 2816 df-ral 3069 df-rex 3070 |
This theorem is referenced by: eqreu 3664 sqrt2irr 15958 acsfn 17368 ovolgelb 24644 fsuppind 40279 |
Copyright terms: Public domain | W3C validator |