MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsralv Structured version   Visualization version   GIF version

Theorem ceqsralv 3521
Description: Restricted quantifier version of ceqsalv 3520. (Contributed by NM, 21-Jun-2013.) Avoid ax-9 2117, ax-12 2176, ax-ext 2707. (Revised by SN, 8-Sep-2024.)
Hypothesis
Ref Expression
ceqsralv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsralv (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsralv
StepHypRef Expression
1 ceqsralv.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21pm5.74i 271 . . 3 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
32ralbii 3092 . 2 (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ∀𝑥𝐵 (𝑥 = 𝐴𝜓))
4 r19.23v 3182 . . 3 (∀𝑥𝐵 (𝑥 = 𝐴𝜓) ↔ (∃𝑥𝐵 𝑥 = 𝐴𝜓))
5 risset 3232 . . . 4 (𝐴𝐵 ↔ ∃𝑥𝐵 𝑥 = 𝐴)
6 pm5.5 361 . . . 4 (∃𝑥𝐵 𝑥 = 𝐴 → ((∃𝑥𝐵 𝑥 = 𝐴𝜓) ↔ 𝜓))
75, 6sylbi 217 . . 3 (𝐴𝐵 → ((∃𝑥𝐵 𝑥 = 𝐴𝜓) ↔ 𝜓))
84, 7bitrid 283 . 2 (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜓) ↔ 𝜓))
93, 8bitrid 283 1 (𝐴𝐵 → (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  wral 3060  wrex 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-clel 2815  df-ral 3061  df-rex 3070
This theorem is referenced by:  eqreu  3734  sqrt2irr  16286  acsfn  17703  ovolgelb  25516  fsuppind  42605
  Copyright terms: Public domain W3C validator