Proof of Theorem ceqsex8v
Step | Hyp | Ref
| Expression |
1 | | 19.42vv 1962 |
. . . . . . 7
⊢
(∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) |
2 | 1 | 2exbii 1852 |
. . . . . 6
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ ∃𝑣∃𝑢(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) |
3 | | 19.42vv 1962 |
. . . . . 6
⊢
(∃𝑣∃𝑢(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) |
4 | 2, 3 | bitri 274 |
. . . . 5
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) |
5 | | 3anass 1093 |
. . . . . . . 8
⊢ ((((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑))) |
6 | | df-3an 1087 |
. . . . . . . . 9
⊢ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑) ↔ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑)) |
7 | 6 | anbi2i 622 |
. . . . . . . 8
⊢ ((((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑))) |
8 | 5, 7 | bitr4i 277 |
. . . . . . 7
⊢ ((((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) |
9 | 8 | 2exbii 1852 |
. . . . . 6
⊢
(∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) |
10 | 9 | 2exbii 1852 |
. . . . 5
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) |
11 | | df-3an 1087 |
. . . . 5
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) |
12 | 4, 10, 11 | 3bitr4i 302 |
. . . 4
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) |
13 | 12 | 2exbii 1852 |
. . 3
⊢
(∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) |
14 | 13 | 2exbii 1852 |
. 2
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) |
15 | | ceqsex8v.1 |
. . . 4
⊢ 𝐴 ∈ V |
16 | | ceqsex8v.2 |
. . . 4
⊢ 𝐵 ∈ V |
17 | | ceqsex8v.3 |
. . . 4
⊢ 𝐶 ∈ V |
18 | | ceqsex8v.4 |
. . . 4
⊢ 𝐷 ∈ V |
19 | | ceqsex8v.9 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
20 | 19 | 3anbi3d 1440 |
. . . . 5
⊢ (𝑥 = 𝐴 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓))) |
21 | 20 | 4exbidv 1930 |
. . . 4
⊢ (𝑥 = 𝐴 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓))) |
22 | | ceqsex8v.10 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
23 | 22 | 3anbi3d 1440 |
. . . . 5
⊢ (𝑦 = 𝐵 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒))) |
24 | 23 | 4exbidv 1930 |
. . . 4
⊢ (𝑦 = 𝐵 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒))) |
25 | | ceqsex8v.11 |
. . . . . 6
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
26 | 25 | 3anbi3d 1440 |
. . . . 5
⊢ (𝑧 = 𝐶 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃))) |
27 | 26 | 4exbidv 1930 |
. . . 4
⊢ (𝑧 = 𝐶 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃))) |
28 | | ceqsex8v.12 |
. . . . . 6
⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) |
29 | 28 | 3anbi3d 1440 |
. . . . 5
⊢ (𝑤 = 𝐷 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏))) |
30 | 29 | 4exbidv 1930 |
. . . 4
⊢ (𝑤 = 𝐷 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏))) |
31 | 15, 16, 17, 18, 21, 24, 27, 30 | ceqsex4v 3475 |
. . 3
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏)) |
32 | | ceqsex8v.5 |
. . . 4
⊢ 𝐸 ∈ V |
33 | | ceqsex8v.6 |
. . . 4
⊢ 𝐹 ∈ V |
34 | | ceqsex8v.7 |
. . . 4
⊢ 𝐺 ∈ V |
35 | | ceqsex8v.8 |
. . . 4
⊢ 𝐻 ∈ V |
36 | | ceqsex8v.13 |
. . . 4
⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) |
37 | | ceqsex8v.14 |
. . . 4
⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) |
38 | | ceqsex8v.15 |
. . . 4
⊢ (𝑡 = 𝐺 → (𝜁 ↔ 𝜎)) |
39 | | ceqsex8v.16 |
. . . 4
⊢ (𝑠 = 𝐻 → (𝜎 ↔ 𝜌)) |
40 | 32, 33, 34, 35, 36, 37, 38, 39 | ceqsex4v 3475 |
. . 3
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏) ↔ 𝜌) |
41 | 31, 40 | bitri 274 |
. 2
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ 𝜌) |
42 | 14, 41 | bitri 274 |
1
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ 𝜌) |