Proof of Theorem ceqsex8v
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 19.42vv 1957 | . . . . . . 7
⊢
(∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 2 | 1 | 2exbii 1849 | . . . . . 6
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ ∃𝑣∃𝑢(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 3 |  | 19.42vv 1957 | . . . . . 6
⊢
(∃𝑣∃𝑢(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 4 | 2, 3 | bitri 275 | . . . . 5
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 5 |  | 3anass 1095 | . . . . . . . 8
⊢ ((((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑))) | 
| 6 |  | df-3an 1089 | . . . . . . . . 9
⊢ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑) ↔ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑)) | 
| 7 | 6 | anbi2i 623 | . . . . . . . 8
⊢ ((((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑))) | 
| 8 | 5, 7 | bitr4i 278 | . . . . . . 7
⊢ ((((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 9 | 8 | 2exbii 1849 | . . . . . 6
⊢
(∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 10 | 9 | 2exbii 1849 | . . . . 5
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 11 |  | df-3an 1089 | . . . . 5
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 12 | 4, 10, 11 | 3bitr4i 303 | . . . 4
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 13 | 12 | 2exbii 1849 | . . 3
⊢
(∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 14 | 13 | 2exbii 1849 | . 2
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑))) | 
| 15 |  | ceqsex8v.1 | . . 3
⊢ 𝐴 ∈ V | 
| 16 |  | ceqsex8v.2 | . . 3
⊢ 𝐵 ∈ V | 
| 17 |  | ceqsex8v.3 | . . 3
⊢ 𝐶 ∈ V | 
| 18 |  | ceqsex8v.4 | . . 3
⊢ 𝐷 ∈ V | 
| 19 |  | ceqsex8v.9 | . . . . 5
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| 20 | 19 | 3anbi3d 1444 | . . . 4
⊢ (𝑥 = 𝐴 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓))) | 
| 21 | 20 | 4exbidv 1926 | . . 3
⊢ (𝑥 = 𝐴 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓))) | 
| 22 |  | ceqsex8v.10 | . . . . 5
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| 23 | 22 | 3anbi3d 1444 | . . . 4
⊢ (𝑦 = 𝐵 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒))) | 
| 24 | 23 | 4exbidv 1926 | . . 3
⊢ (𝑦 = 𝐵 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜓) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒))) | 
| 25 |  | ceqsex8v.11 | . . . . 5
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | 
| 26 | 25 | 3anbi3d 1444 | . . . 4
⊢ (𝑧 = 𝐶 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃))) | 
| 27 | 26 | 4exbidv 1926 | . . 3
⊢ (𝑧 = 𝐶 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜒) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃))) | 
| 28 |  | ceqsex8v.12 | . . . . 5
⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) | 
| 29 | 28 | 3anbi3d 1444 | . . . 4
⊢ (𝑤 = 𝐷 → (((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃) ↔ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏))) | 
| 30 | 29 | 4exbidv 1926 | . . 3
⊢ (𝑤 = 𝐷 → (∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜃) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏))) | 
| 31 | 15, 16, 17, 18, 21, 24, 27, 30 | ceqsex4v 3538 | . 2
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜑)) ↔ ∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏)) | 
| 32 |  | ceqsex8v.5 | . . 3
⊢ 𝐸 ∈ V | 
| 33 |  | ceqsex8v.6 | . . 3
⊢ 𝐹 ∈ V | 
| 34 |  | ceqsex8v.7 | . . 3
⊢ 𝐺 ∈ V | 
| 35 |  | ceqsex8v.8 | . . 3
⊢ 𝐻 ∈ V | 
| 36 |  | ceqsex8v.13 | . . 3
⊢ (𝑣 = 𝐸 → (𝜏 ↔ 𝜂)) | 
| 37 |  | ceqsex8v.14 | . . 3
⊢ (𝑢 = 𝐹 → (𝜂 ↔ 𝜁)) | 
| 38 |  | ceqsex8v.15 | . . 3
⊢ (𝑡 = 𝐺 → (𝜁 ↔ 𝜎)) | 
| 39 |  | ceqsex8v.16 | . . 3
⊢ (𝑠 = 𝐻 → (𝜎 ↔ 𝜌)) | 
| 40 | 32, 33, 34, 35, 36, 37, 38, 39 | ceqsex4v 3538 | . 2
⊢
(∃𝑣∃𝑢∃𝑡∃𝑠((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻) ∧ 𝜏) ↔ 𝜌) | 
| 41 | 14, 31, 40 | 3bitri 297 | 1
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤∃𝑣∃𝑢∃𝑡∃𝑠(((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷)) ∧ ((𝑣 = 𝐸 ∧ 𝑢 = 𝐹) ∧ (𝑡 = 𝐺 ∧ 𝑠 = 𝐻)) ∧ 𝜑) ↔ 𝜌) |