Proof of Theorem ceqsex4v
Step | Hyp | Ref
| Expression |
1 | | 19.42vv 1961 |
. . . 4
⊢
(∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑)) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) |
2 | | 3anass 1094 |
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑))) |
3 | | df-3an 1088 |
. . . . . . 7
⊢ ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑) ↔ ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑)) |
4 | 3 | anbi2i 623 |
. . . . . 6
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑)) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑))) |
5 | 2, 4 | bitr4i 277 |
. . . . 5
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) |
6 | 5 | 2exbii 1851 |
. . . 4
⊢
(∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ ∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) |
7 | | df-3an 1088 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑)) ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) |
8 | 1, 6, 7 | 3bitr4i 303 |
. . 3
⊢
(∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) |
9 | 8 | 2exbii 1851 |
. 2
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑))) |
10 | | ceqsex4v.1 |
. . 3
⊢ 𝐴 ∈ V |
11 | | ceqsex4v.2 |
. . 3
⊢ 𝐵 ∈ V |
12 | | ceqsex4v.7 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
13 | 12 | 3anbi3d 1441 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑) ↔ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓))) |
14 | 13 | 2exbidv 1927 |
. . 3
⊢ (𝑥 = 𝐴 → (∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑) ↔ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓))) |
15 | | ceqsex4v.8 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
16 | 15 | 3anbi3d 1441 |
. . . 4
⊢ (𝑦 = 𝐵 → ((𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓) ↔ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒))) |
17 | 16 | 2exbidv 1927 |
. . 3
⊢ (𝑦 = 𝐵 → (∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓) ↔ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒))) |
18 | 10, 11, 14, 17 | ceqsex2v 3483 |
. 2
⊢
(∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑)) ↔ ∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒)) |
19 | | ceqsex4v.3 |
. . 3
⊢ 𝐶 ∈ V |
20 | | ceqsex4v.4 |
. . 3
⊢ 𝐷 ∈ V |
21 | | ceqsex4v.9 |
. . 3
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
22 | | ceqsex4v.10 |
. . 3
⊢ (𝑤 = 𝐷 → (𝜃 ↔ 𝜏)) |
23 | 19, 20, 21, 22 | ceqsex2v 3483 |
. 2
⊢
(∃𝑧∃𝑤(𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒) ↔ 𝜏) |
24 | 9, 18, 23 | 3bitri 297 |
1
⊢
(∃𝑥∃𝑦∃𝑧∃𝑤((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ (𝑧 = 𝐶 ∧ 𝑤 = 𝐷) ∧ 𝜑) ↔ 𝜏) |