MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsex4v Structured version   Visualization version   GIF version

Theorem ceqsex4v 3485
Description: Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
Hypotheses
Ref Expression
ceqsex4v.1 𝐴 ∈ V
ceqsex4v.2 𝐵 ∈ V
ceqsex4v.3 𝐶 ∈ V
ceqsex4v.4 𝐷 ∈ V
ceqsex4v.7 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsex4v.8 (𝑦 = 𝐵 → (𝜓𝜒))
ceqsex4v.9 (𝑧 = 𝐶 → (𝜒𝜃))
ceqsex4v.10 (𝑤 = 𝐷 → (𝜃𝜏))
Assertion
Ref Expression
ceqsex4v (∃𝑥𝑦𝑧𝑤((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑) ↔ 𝜏)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤   𝑥,𝐶,𝑦,𝑧,𝑤   𝑥,𝐷,𝑦,𝑧,𝑤   𝜓,𝑥   𝜒,𝑦   𝜃,𝑧   𝜏,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑦,𝑧,𝑤)   𝜒(𝑥,𝑧,𝑤)   𝜃(𝑥,𝑦,𝑤)   𝜏(𝑥,𝑦,𝑧)

Proof of Theorem ceqsex4v
StepHypRef Expression
1 19.42vv 1961 . . . 4 (∃𝑧𝑤((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷𝜑)) ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∧ ∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜑)))
2 3anass 1094 . . . . . 6 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∧ ((𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑)))
3 df-3an 1088 . . . . . . 7 ((𝑧 = 𝐶𝑤 = 𝐷𝜑) ↔ ((𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑))
43anbi2i 623 . . . . . 6 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷𝜑)) ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∧ ((𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑)))
52, 4bitr4i 277 . . . . 5 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑) ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷𝜑)))
652exbii 1851 . . . 4 (∃𝑧𝑤((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑) ↔ ∃𝑧𝑤((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷𝜑)))
7 df-3an 1088 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵 ∧ ∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜑)) ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∧ ∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜑)))
81, 6, 73bitr4i 303 . . 3 (∃𝑧𝑤((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑) ↔ (𝑥 = 𝐴𝑦 = 𝐵 ∧ ∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜑)))
982exbii 1851 . 2 (∃𝑥𝑦𝑧𝑤((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑) ↔ ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵 ∧ ∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜑)))
10 ceqsex4v.1 . . 3 𝐴 ∈ V
11 ceqsex4v.2 . . 3 𝐵 ∈ V
12 ceqsex4v.7 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
13123anbi3d 1441 . . . 4 (𝑥 = 𝐴 → ((𝑧 = 𝐶𝑤 = 𝐷𝜑) ↔ (𝑧 = 𝐶𝑤 = 𝐷𝜓)))
14132exbidv 1927 . . 3 (𝑥 = 𝐴 → (∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜑) ↔ ∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜓)))
15 ceqsex4v.8 . . . . 5 (𝑦 = 𝐵 → (𝜓𝜒))
16153anbi3d 1441 . . . 4 (𝑦 = 𝐵 → ((𝑧 = 𝐶𝑤 = 𝐷𝜓) ↔ (𝑧 = 𝐶𝑤 = 𝐷𝜒)))
17162exbidv 1927 . . 3 (𝑦 = 𝐵 → (∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜓) ↔ ∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜒)))
1810, 11, 14, 17ceqsex2v 3483 . 2 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵 ∧ ∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜑)) ↔ ∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜒))
19 ceqsex4v.3 . . 3 𝐶 ∈ V
20 ceqsex4v.4 . . 3 𝐷 ∈ V
21 ceqsex4v.9 . . 3 (𝑧 = 𝐶 → (𝜒𝜃))
22 ceqsex4v.10 . . 3 (𝑤 = 𝐷 → (𝜃𝜏))
2319, 20, 21, 22ceqsex2v 3483 . 2 (∃𝑧𝑤(𝑧 = 𝐶𝑤 = 𝐷𝜒) ↔ 𝜏)
249, 18, 233bitri 297 1 (∃𝑥𝑦𝑧𝑤((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷) ∧ 𝜑) ↔ 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ex 1783  df-clel 2816
This theorem is referenced by:  ceqsex8v  3487  dihopelvalcpre  39262
  Copyright terms: Public domain W3C validator