![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4exbidv | Structured version Visualization version GIF version |
Description: Formula-building rule for four existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
4exbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
4exbidv | ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4exbidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | 2exbidv 1928 | . 2 ⊢ (𝜑 → (∃𝑧∃𝑤𝜓 ↔ ∃𝑧∃𝑤𝜒)) |
3 | 2 | 2exbidv 1928 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤𝜓 ↔ ∃𝑥∃𝑦∃𝑧∃𝑤𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: ceqsex8v 3533 copsex4g 5493 opbrop 5770 ov3 7564 brecop 8799 addsrmo 11063 mulsrmo 11064 addsrpr 11065 mulsrpr 11066 dihopelvalcpre 40056 xihopellsmN 40062 dihopellsm 40063 |
Copyright terms: Public domain | W3C validator |