MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4exbidv Structured version   Visualization version   GIF version

Theorem 4exbidv 1927
Description: Formula-building rule for four existential quantifiers (deduction form). (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
4exbidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
4exbidv (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧   𝜑,𝑤
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤)   𝜒(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4exbidv
StepHypRef Expression
1 4exbidv.1 . . 3 (𝜑 → (𝜓𝜒))
212exbidv 1925 . 2 (𝜑 → (∃𝑧𝑤𝜓 ↔ ∃𝑧𝑤𝜒))
322exbidv 1925 1 (𝜑 → (∃𝑥𝑦𝑧𝑤𝜓 ↔ ∃𝑥𝑦𝑧𝑤𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911
This theorem depends on definitions:  df-bi 210  df-ex 1782
This theorem is referenced by:  ceqsex8v  3467  copsex4g  5357  opbrop  5621  ov3  7312  brecop  8405  addsrmo  10538  mulsrmo  10539  addsrpr  10540  mulsrpr  10541  dihopelvalcpre  38850  xihopellsmN  38856  dihopellsm  38857
  Copyright terms: Public domain W3C validator