| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexv2dOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of ceqsexv2d 3533 as of 5-Jun-2025. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ceqsexv2dOLD.1 | ⊢ 𝐴 ∈ V |
| ceqsexv2dOLD.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ceqsexv2dOLD.3 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| ceqsexv2dOLD | ⊢ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsexv2dOLD.3 | . 2 ⊢ 𝜓 | |
| 2 | ceqsexv2dOLD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | ceqsexv2dOLD.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | ceqsexv 3532 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| 5 | 4 | biimpri 228 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
| 6 | exsimpr 1869 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
| 7 | 1, 5, 6 | mp2b 10 | 1 ⊢ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2816 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |