![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsexv2dOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ceqsexv2d 3545 as of 5-Jun-2025. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ceqsexv2dOLD.1 | ⊢ 𝐴 ∈ V |
ceqsexv2dOLD.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ceqsexv2dOLD.3 | ⊢ 𝜓 |
Ref | Expression |
---|---|
ceqsexv2dOLD | ⊢ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsexv2dOLD.3 | . 2 ⊢ 𝜓 | |
2 | ceqsexv2dOLD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | ceqsexv2dOLD.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | ceqsexv 3542 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
5 | 4 | biimpri 228 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
6 | exsimpr 1868 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
7 | 1, 5, 6 | mp2b 10 | 1 ⊢ ∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |