MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsexv2dOLD Structured version   Visualization version   GIF version

Theorem ceqsexv2dOLD 3546
Description: Obsolete version of ceqsexv2d 3545 as of 5-Jun-2025. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ceqsexv2dOLD.1 𝐴 ∈ V
ceqsexv2dOLD.2 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsexv2dOLD.3 𝜓
Assertion
Ref Expression
ceqsexv2dOLD 𝑥𝜑
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsexv2dOLD
StepHypRef Expression
1 ceqsexv2dOLD.3 . 2 𝜓
2 ceqsexv2dOLD.1 . . . 4 𝐴 ∈ V
3 ceqsexv2dOLD.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
42, 3ceqsexv 3542 . . 3 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
54biimpri 228 . 2 (𝜓 → ∃𝑥(𝑥 = 𝐴𝜑))
6 exsimpr 1868 . 2 (∃𝑥(𝑥 = 𝐴𝜑) → ∃𝑥𝜑)
71, 5, 6mp2b 10 1 𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-clel 2819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator