![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsexv | Structured version Visualization version GIF version |
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2178. (Revised by GG, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
Ref | Expression |
---|---|
ceqsexv.1 | ⊢ 𝐴 ∈ V |
ceqsexv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsexv | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alinexa 1841 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | |
2 | ceqsexv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | ceqsexv.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 3 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
5 | 2, 4 | ceqsalv 3529 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ 𝜓) |
6 | 1, 5 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ¬ 𝜓) |
7 | 6 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 |
This theorem is referenced by: ceqsexv2dOLD 3546 ceqsex2v 3548 ceqsex3v 3549 gencbvex 3553 euxfr2w 3742 euxfr2 3744 inuni 5368 eqvinop 5507 elvvv 5775 dmfco 7018 fndmdif 7075 fndmin 7078 fmptco 7163 abrexco 7281 imaeqsexvOLD 7399 imaeqexov 7688 uniuni 7797 elxp4 7962 elxp5 7963 brtpos2 8273 xpsnen 9121 xpcomco 9128 xpassen 9132 brttrcl2 9783 dfac5lem2 10193 cf0 10320 ltexprlem4 11108 pceu 16893 4sqlem12 17003 vdwapun 17021 gsumval3eu 19946 dprd2d2 20088 znleval 21596 metrest 24558 sleadd1 28040 addsuniflem 28052 addsasslem1 28054 addsasslem2 28055 mulsuniflem 28193 addsdilem1 28195 addsdilem2 28196 mulsasslem1 28207 mulsasslem2 28208 renegscl 28448 readdscl 28449 remulscl 28452 fmptcof2 32675 fpwrelmapffslem 32746 cusgredgex 35089 dfdm5 35736 dfrn5 35737 elima4 35739 brtxp 35844 brpprod 35849 elfix 35867 dfiota3 35887 brimg 35901 brapply 35902 brsuccf 35905 funpartlem 35906 brrestrict 35913 dfrecs2 35914 dfrdg4 35915 lshpsmreu 39065 isopos 39136 islpln5 39492 islvol5 39536 cdlemftr3 40522 dibelval3 41104 dicelval3 41137 mapdpglem3 41632 hdmapglem7a 41884 diophrex 42731 |
Copyright terms: Public domain | W3C validator |