| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexv | Structured version Visualization version GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2179. (Revised by GG, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
| Ref | Expression |
|---|---|
| ceqsexv.1 | ⊢ 𝐴 ∈ V |
| ceqsexv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsexv | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alinexa 1844 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | |
| 2 | ceqsexv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | ceqsexv.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 5 | 2, 4 | ceqsalv 3474 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ 𝜓) |
| 6 | 1, 5 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ¬ 𝜓) |
| 7 | 6 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2110 Vcvv 3434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2804 |
| This theorem is referenced by: ceqsexv2dOLD 3487 ceqsex2v 3489 ceqsex3v 3490 gencbvex 3494 euxfr2w 3677 euxfr2 3679 inuni 5286 eqvinop 5425 elvvv 5690 dmfco 6913 fndmdif 6970 fndmin 6973 fmptco 7057 abrexco 7173 imaeqsexvOLD 7292 imaeqexov 7579 uniuni 7690 elxp4 7847 elxp5 7848 brtpos2 8157 xpsnen 8969 xpcomco 8975 xpassen 8979 brttrcl2 9599 dfac5lem2 10007 cf0 10134 ltexprlem4 10922 pceu 16750 4sqlem12 16860 vdwapun 16878 gsumval3eu 19809 dprd2d2 19951 znleval 21484 metrest 24432 sleadd1 27925 addsuniflem 27937 addsasslem1 27939 addsasslem2 27940 mulsuniflem 28081 addsdilem1 28083 addsdilem2 28084 mulsasslem1 28095 mulsasslem2 28096 renegscl 28393 readdscl 28394 remulscl 28397 fmptcof2 32629 fpwrelmapffslem 32705 cusgredgex 35134 dfdm5 35785 dfrn5 35786 elima4 35788 brtxp 35893 brpprod 35898 elfix 35916 dfiota3 35936 brimg 35950 brapply 35951 brsuccf 35954 funpartlem 35955 brrestrict 35962 dfrecs2 35963 dfrdg4 35964 lshpsmreu 39127 isopos 39198 islpln5 39553 islvol5 39597 cdlemftr3 40583 dibelval3 41165 dicelval3 41198 mapdpglem3 41693 hdmapglem7a 41945 diophrex 42787 |
| Copyright terms: Public domain | W3C validator |