![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsexv | Structured version Visualization version GIF version |
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) |
Ref | Expression |
---|---|
ceqsexv.1 | ⊢ 𝐴 ∈ V |
ceqsexv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsexv | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 2010 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | ceqsexv.1 | . 2 ⊢ 𝐴 ∈ V | |
3 | ceqsexv.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | ceqsex 3427 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∃wex 1875 ∈ wcel 2157 Vcvv 3383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-v 3385 |
This theorem is referenced by: ceqsexv2d 3429 ceqsex3v 3432 gencbvex 3436 euxfr2 3585 inuni 5016 eqvinop 5143 elvvv 5379 dmfco 6495 fndmdif 6545 fndmin 6548 fmptco 6621 abrexco 6728 uniuni 7202 elxp4 7343 elxp5 7344 opabex3d 7377 opabex3 7378 brtpos2 7594 mapsnend 8272 xpsnen 8284 xpcomco 8290 xpassen 8294 dfac5lem1 9230 dfac5lem2 9231 dfac5lem3 9232 cf0 9359 ltexprlem4 10147 pceu 15880 4sqlem12 15989 vdwapun 16007 gsumval3eu 18616 dprd2d2 18755 znleval 20220 metrest 22653 fmptcof2 29967 fpwrelmapffslem 30016 dfdm5 32179 dfrn5 32180 elima4 32182 brtxp 32491 brpprod 32496 elfix 32514 dffix2 32516 sscoid 32524 dfiota3 32534 brimg 32548 brapply 32549 brsuccf 32552 funpartlem 32553 brrestrict 32560 dfrecs2 32561 dfrdg4 32562 lshpsmreu 35121 isopos 35192 islpln5 35547 islvol5 35591 pmapglb 35782 polval2N 35918 cdlemftr3 36577 dibelval3 37159 dicelval3 37192 mapdpglem3 37687 hdmapglem7a 37939 diophrex 38112 opeliun2xp 42897 |
Copyright terms: Public domain | W3C validator |