| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexv | Structured version Visualization version GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2180. (Revised by GG, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
| Ref | Expression |
|---|---|
| ceqsexv.1 | ⊢ 𝐴 ∈ V |
| ceqsexv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsexv | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alinexa 1844 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | |
| 2 | ceqsexv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | ceqsexv.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 5 | 2, 4 | ceqsalv 3476 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ 𝜓) |
| 6 | 1, 5 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ¬ 𝜓) |
| 7 | 6 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 |
| This theorem is referenced by: ceqsexv2dOLD 3488 ceqsex2v 3490 ceqsex3v 3491 gencbvex 3495 euxfr2w 3674 euxfr2 3676 inuni 5290 eqvinop 5430 elvvv 5695 dmfco 6924 fndmdif 6981 fndmin 6984 fmptco 7068 abrexco 7184 imaeqsexvOLD 7303 imaeqexov 7590 uniuni 7701 elxp4 7858 elxp5 7859 brtpos2 8168 xpsnen 8980 xpcomco 8986 xpassen 8990 brttrcl2 9610 dfac5lem2 10021 cf0 10148 ltexprlem4 10936 pceu 16764 4sqlem12 16874 vdwapun 16892 gsumval3eu 19822 dprd2d2 19964 znleval 21497 metrest 24445 sleadd1 27938 addsuniflem 27950 addsasslem1 27952 addsasslem2 27953 mulsuniflem 28094 addsdilem1 28096 addsdilem2 28097 mulsasslem1 28108 mulsasslem2 28109 renegscl 28406 readdscl 28407 remulscl 28410 fmptcof2 32646 fpwrelmapffslem 32722 cusgredgex 35173 dfdm5 35824 dfrn5 35825 elima4 35827 brtxp 35929 brpprod 35934 elfix 35952 dfiota3 35972 brimg 35986 brapply 35987 lemsuccf 35990 funpartlem 35993 brrestrict 36000 dfrecs2 36001 dfrdg4 36002 lshpsmreu 39214 isopos 39285 islpln5 39640 islvol5 39684 cdlemftr3 40670 dibelval3 41252 dicelval3 41285 mapdpglem3 41780 hdmapglem7a 42032 diophrex 42873 |
| Copyright terms: Public domain | W3C validator |