| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexv | Structured version Visualization version GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2178. (Revised by GG, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
| Ref | Expression |
|---|---|
| ceqsexv.1 | ⊢ 𝐴 ∈ V |
| ceqsexv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsexv | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alinexa 1843 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | |
| 2 | ceqsexv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | ceqsexv.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 5 | 2, 4 | ceqsalv 3484 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ 𝜓) |
| 6 | 1, 5 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ¬ 𝜓) |
| 7 | 6 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: ceqsexv2dOLD 3497 ceqsex2v 3499 ceqsex3v 3500 gencbvex 3504 euxfr2w 3688 euxfr2 3690 inuni 5300 eqvinop 5442 elvvv 5707 dmfco 6940 fndmdif 6997 fndmin 7000 fmptco 7084 abrexco 7201 imaeqsexvOLD 7321 imaeqexov 7608 uniuni 7719 elxp4 7879 elxp5 7880 brtpos2 8189 xpsnen 9003 xpcomco 9009 xpassen 9013 brttrcl2 9646 dfac5lem2 10056 cf0 10183 ltexprlem4 10971 pceu 16795 4sqlem12 16905 vdwapun 16923 gsumval3eu 19820 dprd2d2 19962 znleval 21498 metrest 24447 sleadd1 27938 addsuniflem 27950 addsasslem1 27952 addsasslem2 27953 mulsuniflem 28094 addsdilem1 28096 addsdilem2 28097 mulsasslem1 28108 mulsasslem2 28109 renegscl 28404 readdscl 28405 remulscl 28408 fmptcof2 32633 fpwrelmapffslem 32707 cusgredgex 35104 dfdm5 35755 dfrn5 35756 elima4 35758 brtxp 35863 brpprod 35868 elfix 35886 dfiota3 35906 brimg 35920 brapply 35921 brsuccf 35924 funpartlem 35925 brrestrict 35932 dfrecs2 35933 dfrdg4 35934 lshpsmreu 39097 isopos 39168 islpln5 39524 islvol5 39568 cdlemftr3 40554 dibelval3 41136 dicelval3 41169 mapdpglem3 41664 hdmapglem7a 41916 diophrex 42758 |
| Copyright terms: Public domain | W3C validator |