| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexv | Structured version Visualization version GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2178. (Revised by GG, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
| Ref | Expression |
|---|---|
| ceqsexv.1 | ⊢ 𝐴 ∈ V |
| ceqsexv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsexv | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alinexa 1843 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | |
| 2 | ceqsexv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | ceqsexv.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 5 | 2, 4 | ceqsalv 3487 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ 𝜓) |
| 6 | 1, 5 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ¬ 𝜓) |
| 7 | 6 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: ceqsexv2dOLD 3500 ceqsex2v 3502 ceqsex3v 3503 gencbvex 3507 euxfr2w 3691 euxfr2 3693 inuni 5305 eqvinop 5447 elvvv 5714 dmfco 6957 fndmdif 7014 fndmin 7017 fmptco 7101 abrexco 7218 imaeqsexvOLD 7338 imaeqexov 7627 uniuni 7738 elxp4 7898 elxp5 7899 brtpos2 8211 xpsnen 9025 xpcomco 9031 xpassen 9035 brttrcl2 9667 dfac5lem2 10077 cf0 10204 ltexprlem4 10992 pceu 16817 4sqlem12 16927 vdwapun 16945 gsumval3eu 19834 dprd2d2 19976 znleval 21464 metrest 24412 sleadd1 27896 addsuniflem 27908 addsasslem1 27910 addsasslem2 27911 mulsuniflem 28052 addsdilem1 28054 addsdilem2 28055 mulsasslem1 28066 mulsasslem2 28067 renegscl 28349 readdscl 28350 remulscl 28353 fmptcof2 32581 fpwrelmapffslem 32655 cusgredgex 35109 dfdm5 35760 dfrn5 35761 elima4 35763 brtxp 35868 brpprod 35873 elfix 35891 dfiota3 35911 brimg 35925 brapply 35926 brsuccf 35929 funpartlem 35930 brrestrict 35937 dfrecs2 35938 dfrdg4 35939 lshpsmreu 39102 isopos 39173 islpln5 39529 islvol5 39573 cdlemftr3 40559 dibelval3 41141 dicelval3 41174 mapdpglem3 41669 hdmapglem7a 41921 diophrex 42763 |
| Copyright terms: Public domain | W3C validator |