| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexv | Structured version Visualization version GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2177. (Revised by GG, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
| Ref | Expression |
|---|---|
| ceqsexv.1 | ⊢ 𝐴 ∈ V |
| ceqsexv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsexv | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alinexa 1843 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | |
| 2 | ceqsexv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | ceqsexv.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 5 | 2, 4 | ceqsalv 3500 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ 𝜓) |
| 6 | 1, 5 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ¬ 𝜓) |
| 7 | 6 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2809 |
| This theorem is referenced by: ceqsexv2dOLD 3513 ceqsex2v 3515 ceqsex3v 3516 gencbvex 3520 euxfr2w 3703 euxfr2 3705 inuni 5320 eqvinop 5462 elvvv 5730 dmfco 6975 fndmdif 7032 fndmin 7035 fmptco 7119 abrexco 7236 imaeqsexvOLD 7356 imaeqexov 7645 uniuni 7756 elxp4 7918 elxp5 7919 brtpos2 8231 xpsnen 9069 xpcomco 9076 xpassen 9080 brttrcl2 9728 dfac5lem2 10138 cf0 10265 ltexprlem4 11053 pceu 16866 4sqlem12 16976 vdwapun 16994 gsumval3eu 19885 dprd2d2 20027 znleval 21515 metrest 24463 sleadd1 27948 addsuniflem 27960 addsasslem1 27962 addsasslem2 27963 mulsuniflem 28104 addsdilem1 28106 addsdilem2 28107 mulsasslem1 28118 mulsasslem2 28119 renegscl 28401 readdscl 28402 remulscl 28405 fmptcof2 32635 fpwrelmapffslem 32709 cusgredgex 35144 dfdm5 35790 dfrn5 35791 elima4 35793 brtxp 35898 brpprod 35903 elfix 35921 dfiota3 35941 brimg 35955 brapply 35956 brsuccf 35959 funpartlem 35960 brrestrict 35967 dfrecs2 35968 dfrdg4 35969 lshpsmreu 39127 isopos 39198 islpln5 39554 islvol5 39598 cdlemftr3 40584 dibelval3 41166 dicelval3 41199 mapdpglem3 41694 hdmapglem7a 41946 diophrex 42798 |
| Copyright terms: Public domain | W3C validator |