Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsexv | Structured version Visualization version GIF version |
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2172. (Revised by Gino Giotto, 12-Oct-2024.) |
Ref | Expression |
---|---|
ceqsexv.1 | ⊢ 𝐴 ∈ V |
ceqsexv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsexv | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsexv.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpa 477 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → 𝜓) |
3 | 2 | exlimiv 1934 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → 𝜓) |
4 | 1 | biimprcd 249 | . . . 4 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
5 | 4 | alrimiv 1931 | . . 3 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
6 | ceqsexv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
7 | 6 | isseti 3448 | . . 3 ⊢ ∃𝑥 𝑥 = 𝐴 |
8 | exintr 1896 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
9 | 5, 7, 8 | mpisyl 21 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
10 | 3, 9 | impbii 208 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2107 Vcvv 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clel 2817 |
This theorem is referenced by: ceqsexv2d 3482 ceqsex2v 3484 ceqsex3v 3485 gencbvex 3489 euxfr2w 3656 euxfr2 3658 inuni 5268 eqvinop 5402 elvvv 5663 dmfco 6873 fndmdif 6928 fndmin 6931 fmptco 7010 abrexco 7126 uniuni 7621 elxp4 7778 elxp5 7779 brtpos2 8057 xpsnen 8851 xpcomco 8858 xpassen 8862 brttrcl2 9481 dfac5lem2 9889 cf0 10016 ltexprlem4 10804 pceu 16556 4sqlem12 16666 vdwapun 16684 gsumval3eu 19514 dprd2d2 19656 znleval 20771 metrest 23689 fmptcof2 31003 fpwrelmapffslem 31076 cusgredgex 33092 imaeqsexv 33699 dfdm5 33756 dfrn5 33757 elima4 33759 brtxp 34191 brpprod 34196 elfix 34214 dfiota3 34234 brimg 34248 brapply 34249 brsuccf 34252 funpartlem 34253 brrestrict 34260 dfrecs2 34261 dfrdg4 34262 lshpsmreu 37130 isopos 37201 islpln5 37556 islvol5 37600 cdlemftr3 38586 dibelval3 39168 dicelval3 39201 mapdpglem3 39696 hdmapglem7a 39948 diophrex 40604 |
Copyright terms: Public domain | W3C validator |