| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexv | Structured version Visualization version GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2178. (Revised by GG, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 22-Jan-2025.) |
| Ref | Expression |
|---|---|
| ceqsexv.1 | ⊢ 𝐴 ∈ V |
| ceqsexv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsexv | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alinexa 1843 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | |
| 2 | ceqsexv.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 3 | ceqsexv.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 5 | 2, 4 | ceqsalv 3490 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ 𝜓) |
| 6 | 1, 5 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ¬ 𝜓) |
| 7 | 6 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2804 |
| This theorem is referenced by: ceqsexv2dOLD 3503 ceqsex2v 3505 ceqsex3v 3506 gencbvex 3510 euxfr2w 3694 euxfr2 3696 inuni 5308 eqvinop 5450 elvvv 5717 dmfco 6960 fndmdif 7017 fndmin 7020 fmptco 7104 abrexco 7221 imaeqsexvOLD 7341 imaeqexov 7630 uniuni 7741 elxp4 7901 elxp5 7902 brtpos2 8214 xpsnen 9029 xpcomco 9036 xpassen 9040 brttrcl2 9674 dfac5lem2 10084 cf0 10211 ltexprlem4 10999 pceu 16824 4sqlem12 16934 vdwapun 16952 gsumval3eu 19841 dprd2d2 19983 znleval 21471 metrest 24419 sleadd1 27903 addsuniflem 27915 addsasslem1 27917 addsasslem2 27918 mulsuniflem 28059 addsdilem1 28061 addsdilem2 28062 mulsasslem1 28073 mulsasslem2 28074 renegscl 28356 readdscl 28357 remulscl 28360 fmptcof2 32588 fpwrelmapffslem 32662 cusgredgex 35116 dfdm5 35767 dfrn5 35768 elima4 35770 brtxp 35875 brpprod 35880 elfix 35898 dfiota3 35918 brimg 35932 brapply 35933 brsuccf 35936 funpartlem 35937 brrestrict 35944 dfrecs2 35945 dfrdg4 35946 lshpsmreu 39109 isopos 39180 islpln5 39536 islvol5 39580 cdlemftr3 40566 dibelval3 41148 dicelval3 41181 mapdpglem3 41676 hdmapglem7a 41928 diophrex 42770 |
| Copyright terms: Public domain | W3C validator |