MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsexv Structured version   Visualization version   GIF version

Theorem ceqsexv 3469
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2173. (Revised by Gino Giotto, 12-Oct-2024.)
Hypotheses
Ref Expression
ceqsexv.1 𝐴 ∈ V
ceqsexv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsexv (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsexv
StepHypRef Expression
1 ceqsexv.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21biimpa 476 . . 3 ((𝑥 = 𝐴𝜑) → 𝜓)
32exlimiv 1934 . 2 (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓)
41biimprcd 249 . . . 4 (𝜓 → (𝑥 = 𝐴𝜑))
54alrimiv 1931 . . 3 (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))
6 ceqsexv.1 . . . 4 𝐴 ∈ V
76isseti 3437 . . 3 𝑥 𝑥 = 𝐴
8 exintr 1896 . . 3 (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 = 𝐴𝜑)))
95, 7, 8mpisyl 21 . 2 (𝜓 → ∃𝑥(𝑥 = 𝐴𝜑))
103, 9impbii 208 1 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-clel 2817
This theorem is referenced by:  ceqsexv2d  3471  ceqsex2v  3473  ceqsex3v  3474  gencbvex  3478  euxfr2w  3650  euxfr2  3652  inuni  5262  eqvinop  5395  elvvv  5653  dmfco  6846  fndmdif  6901  fndmin  6904  fmptco  6983  abrexco  7099  uniuni  7590  elxp4  7743  elxp5  7744  brtpos2  8019  xpsnen  8796  xpcomco  8802  xpassen  8806  dfac5lem2  9811  cf0  9938  ltexprlem4  10726  pceu  16475  4sqlem12  16585  vdwapun  16603  gsumval3eu  19420  dprd2d2  19562  znleval  20674  metrest  23586  fmptcof2  30896  fpwrelmapffslem  30969  cusgredgex  32983  imaeqsexv  33593  dfdm5  33653  dfrn5  33654  elima4  33656  brttrcl2  33700  brtxp  34109  brpprod  34114  elfix  34132  dfiota3  34152  brimg  34166  brapply  34167  brsuccf  34170  funpartlem  34171  brrestrict  34178  dfrecs2  34179  dfrdg4  34180  lshpsmreu  37050  isopos  37121  islpln5  37476  islvol5  37520  cdlemftr3  38506  dibelval3  39088  dicelval3  39121  mapdpglem3  39616  hdmapglem7a  39868  diophrex  40513
  Copyright terms: Public domain W3C validator