MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsex2 Structured version   Visualization version   GIF version

Theorem ceqsex2 3543
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
Hypotheses
Ref Expression
ceqsex2.1 𝑥𝜓
ceqsex2.2 𝑦𝜒
ceqsex2.3 𝐴 ∈ V
ceqsex2.4 𝐵 ∈ V
ceqsex2.5 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsex2.6 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ceqsex2 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem ceqsex2
StepHypRef Expression
1 3anass 1091 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
21exbii 1848 . . . 4 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ ∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
3 19.42v 1954 . . . 4 (∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
42, 3bitri 277 . . 3 (∃𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
54exbii 1848 . 2 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
6 nfv 1915 . . . . 5 𝑥 𝑦 = 𝐵
7 ceqsex2.1 . . . . 5 𝑥𝜓
86, 7nfan 1900 . . . 4 𝑥(𝑦 = 𝐵𝜓)
98nfex 2343 . . 3 𝑥𝑦(𝑦 = 𝐵𝜓)
10 ceqsex2.3 . . 3 𝐴 ∈ V
11 ceqsex2.5 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
1211anbi2d 630 . . . 4 (𝑥 = 𝐴 → ((𝑦 = 𝐵𝜑) ↔ (𝑦 = 𝐵𝜓)))
1312exbidv 1922 . . 3 (𝑥 = 𝐴 → (∃𝑦(𝑦 = 𝐵𝜑) ↔ ∃𝑦(𝑦 = 𝐵𝜓)))
149, 10, 13ceqsex 3540 . 2 (∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)) ↔ ∃𝑦(𝑦 = 𝐵𝜓))
15 ceqsex2.2 . . 3 𝑦𝜒
16 ceqsex2.4 . . 3 𝐵 ∈ V
17 ceqsex2.6 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
1815, 16, 17ceqsex 3540 . 2 (∃𝑦(𝑦 = 𝐵𝜓) ↔ 𝜒)
195, 14, 183bitri 299 1 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wnf 1784  wcel 2114  Vcvv 3494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-cleq 2814  df-clel 2893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator